We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Antibody Cocktail Blocks Growth of Drug-Resistant Lung Tumors in Mouse Model

By LabMedica International staff writers
Posted on 17 Jun 2015
Print article
Image: Lung cancer cells (green) are cultured together with normal lung cells (red). The triple-antibody combination EGFR, HER2, and HER3 strongly impairs the survival of tumor cells while sparing normal cells (Photo courtesy of Weizmann Institute of Science).
Image: Lung cancer cells (green) are cultured together with normal lung cells (red). The triple-antibody combination EGFR, HER2, and HER3 strongly impairs the survival of tumor cells while sparing normal cells (Photo courtesy of Weizmann Institute of Science).
Cancer researchers developed a cocktail of three monoclonal antibodies that was able to halt drug-resistant tumor growth in a mouse xenograft lung cancer model.

Lung cancer patients with primary epidermal growth factor receptor (EGFR) mutations usually respond well to treatment with targeted kinase inhibitors, but almost always develop drug acquire resistance, often due to a second-site mutation (T790M). Clinical trials have tested the ability of a monoclonal antibody (mAb) to EGFR but failed to demonstrate any survival benefits despite the fact that the mAB should have blocked activation of the mutated receptor.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) traced the reason for this failure. By using cell lines with the T790M mutation, they discovered that prolonged exposure to mAbs against only the EGFR triggered molecular network rewiring by (i) stimulating the extracellular signal–regulated kinase (ERK) pathway; (ii) inducing the transcription of HER2 (human epidermal growth factor receptor 2) and HER3, which encode other members of the EGFR family, and the gene encoding HGF (hepatocyte growth factor), which is the ligand for the receptor tyrosine kinase MET, a molecule often expressed in metastatic cancers.

To counter the emergence of this new pathway, the investigators developed mAbs against HER2 and HER3. They reported in the June 2, 2015, online edition of the journal Science Signaling that supplementing the EGFR-specific mAb with those targeting HER2 and HER3 suppressed the compensatory feedback loops that had developed in cultured lung cancer cells. The triple mAb combination targeting all three receptors prevented the activation of ERK, accelerated the degradation of the receptors and inhibited the proliferation of tumor cells but not of normal cells. Furthermore, treatment with the antibody cocktail markedly reduced the growth of tumors in mice xenografted with cells that were resistant to combined treatment with erlotinib and the single function-blocking EGFR mAb.

"Treatment by blocking a single target can cause a feedback loop that ultimately leads to a resurgence of the cancer," said senior author Dr. Yosef Yarden, professor of molecular cell biology at the Weizmann Institute of Science. "If we can predict how the cancer cell will react when we block the growth signals it needs to continue proliferating, we can take preemptive steps to prevent this from happening."

Related Links:

Weizmann Institute of Science


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.