We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Seeding Assay May Boost Search for Huntington's Disease Drugs

By LabMedica International staff writers
Posted on 07 Jul 2015
Print article
Image: A photmicrograph of medium spiny neurons (yellow) with nuclear inclusions (orange), which occur as part of the Huntington\'s disease process. Several neurons are colored yellow and have a large central core with up to two dozen tendrils branching out of them. The core of the neuron in the foreground contains an orange blob about a quarter of its diameter (Photo courtesy of Wikimedia Commons).
Image: A photmicrograph of medium spiny neurons (yellow) with nuclear inclusions (orange), which occur as part of the Huntington\'s disease process. Several neurons are colored yellow and have a large central core with up to two dozen tendrils branching out of them. The core of the neuron in the foreground contains an orange blob about a quarter of its diameter (Photo courtesy of Wikimedia Commons).
An assay technique that measures seeding of mutant huntingtin aggregates in cerebral spinal fluid (CSF) may identify individuals with Huntington's disease (HD) that have not yet become symptomatic and may be used to evaluate the efficacy of new drug treatments for the disease.

Huntington’s disease is caused by a dominant gene that encodes a protein known as huntingtin (Htt). The 5' end of the Huntington's disease gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between seven and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of Htt is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at the University of California, Irvine (USA) reported in the June 23, 2015, online edition of the journal Molecular Psychiatry that synthetic polyglutamine oligomers and CSF from BACHD transgenic rats and from human HD subjects can seed mutant huntingtin aggregation in a cell model and its cell lysate.

Studies described in the paper demonstrated that seeding required the mutant huntingtin template and may have reflected an underlying prion-like protein propagation mechanism. Light and cryo-electron microscopy showed that synthetic seeds nucleated and enhanced mutant huntingtin aggregation. Seeding was dose dependent, and extracellular seeds were incorporated into endogenously expressed mutant Htt species, forming aggregated fibrils.

The seeding assay distinguished HD subjects from healthy and non-HD dementia controls without overlap. Ultimately, this seeding property in the CSF of HD patient may form the basis of a molecular biomarker assay to monitor HD and evaluate therapies that target mutant Htt.

"Determining if a treatment modifies the course of a neurodegenerative disease like Huntington's or Alzheimer's may take years of clinical observation," said senior author Dr. Steven Potkin, professor of psychiatry and human behavior at the University of California, Irvine. "This assay that reflects a pathological process can play a key role in more rapidly developing an effective treatment. Blocking the cell-to-cell seeding process itself may turn out to be an effective treatment strategy."

Related Links:

University of California, Irvine


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
ELISA System
ABSOL HS DUO
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.