We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Drug Augmented, Light-Activated Nanoparticles Effectively Kill Cancer Cells

By LabMedica International staff writers
Posted on 28 Jul 2015
Print article
Image: Using a transmission electron microscope (TEM): (A) a bare nanoparticle, (B) a nanoparticle prepared for coating and (C) a nanoparticle coated with a thin layer of drug-delivering hydrogels (Photo courtesy of Dr. Jennifer West, Duke University).
Image: Using a transmission electron microscope (TEM): (A) a bare nanoparticle, (B) a nanoparticle prepared for coating and (C) a nanoparticle coated with a thin layer of drug-delivering hydrogels (Photo courtesy of Dr. Jennifer West, Duke University).
Image: The cells in this image have turned fluorescent pink, showing that the new drug delivery system results in high cellular uptake after being irradiated by near infrared light (Photo courtesy of Dr. Jennifer West, Duke University).
Image: The cells in this image have turned fluorescent pink, showing that the new drug delivery system results in high cellular uptake after being irradiated by near infrared light (Photo courtesy of Dr. Jennifer West, Duke University).
The inclusion of a chemotherapeutic agent within a novel class of light-sensitive nanoparticles enhanced their ability to kill cancer cells.

Investigators at Duke University (Durham, NC, USA) have been working with light-activated nanoparticles that they fabricated by synthesizing a thin, thermally responsive poly(N-isopropylacrylamide-co-acrylamide) hydrogel coating directly onto the surfaces of individual near-infrared (NIR) absorbing gold-silica nanoshells.

This hydrogel was designed to be in a swollen state under physiological conditions and expel large amounts of water, along with any entrapped drug, at elevated temperatures. The required temperature change was achieved via NIR absorption by the nanoshell, allowing the hydrogel phase change to be triggered by light, which was observed by monitoring changes in particle sizes as water was expelled from the hydrogel network.

As a further refinement, the investigators used these light sensitive nanoparticles as carriers to deliver the chemotherapeutic drug doxorubicin (DOX). Although in use for more than 40 years as a primary chemotherapy drug, DOX is known to cause serious heart problems. To prevent these, doctors may limit the amount of DOX given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of DOX in treating cancer.

Results published in the June 10, 2015, online edition of the journal ACS Biomaterials Science & Engineering revealed that exposure to NIR light triggered rapid release of doxorubicin from the nanoparticle delivery vehicles. Colon carcinoma cells exposed to the irradiated platform displayed nearly three times as much doxorubicin uptake as cells exposed to non-irradiated particles or free drug, which in turn resulted in a higher loss of cell viability. The increased uptake of DOX might have been due to the NIR-mediated heating of the nanoparticles, which caused a transient increase in cell membrane permeability, thus aiding in cellular uptake of the drug.

"The idea is to combine tumor-destroying heat therapy with localized drug delivery, so that you can hopefully have the most effective treatment possible," said senior author Dr. Jennifer West, professor of bioengineering at Duke University. "And many chemotherapeutic drugs have been shown to be more effective in heated tissue, so there's a potential synergy between the two approaches. The hydrogels can release drugs just above body temperature, so you could potentially look at this for other drug-delivery applications where you do not necessarily want to destroy the tissue. You could do a milder warming and still trigger the drug release."

The potential use of light-sensitive nanoparticle therapy is being investigated for several types of cancers at Nanospectra Biosciences, Inc. (Houston, TX, USA), a company founded by Dr. West.

Related Links:

Duke University
Nanospectra Biosciences, Inc.


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Chemistry Analyzer
MS100
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.