We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Chimeric Drug Reduces Local Inflammation Without Causing General Immune Suppression

By LabMedica International staff writers
Posted on 02 Aug 2015
Print article
Image: The non-active drug is activated when it becomes localized at a site with excessive inflammation (Photo courtesy of Ben-Gurion University of the Negev).
Image: The non-active drug is activated when it becomes localized at a site with excessive inflammation (Photo courtesy of Ben-Gurion University of the Negev).
A novel anti-inflammatory drug is based on a chimeric molecule that avoids general immune suppression by being non-active when injected but is converted into an activate agent by leukocytes concentrated at the site of local inflammation.

Investigators at Ben-Gurion University of the Negev (Beer Sheba, Israel) and the University of Colorado (Boulder, USA) created the chimeric drug by fusing the N-terminal peptide of interleukin-1beta (IL-1beta) to IL-1R antagonist (IL-1Ra), resulting in inactive IL-1Ra.

Since the IL-1beta N-terminal peptide contained several protease sites clustered around the caspase-1 site, local proteases at sites of inflammation were able to cleave the chimeric IL-1Ra and turn it into active IL-1Ra.

Results published in the July 8, 2015, online edition of Journal of Immunology revealed that chimeric IL-1Ra reduced IL-1–mediated inflammation in a mouse model of local inflammation. This unique approach limited IL-1 receptor blockade to sites of inflammation, while sparing a multitude of desired IL-1–related activities, including host defense against infections and IL-1–mediated repair.

“This development is important because inhibition of inflammation in a nonspecific manner reduces the natural ability to fight infections and is a common side effect of anti-inflammatory biologic therapeutics,” said Dr. Peleg Rider, professor of clinical biochemistry and pharmacology at Ben-Gurion University of the Negev. “The beauty of this invention lies in the use of a known natural biological code. We mimicked a natural process that occurs during inflammation.”

Related Links:

Ben-Gurion University of the Negev
University of Colorado


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.