We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




British Diabetes Research Program Awarded Major Funding Boost

By LabMedica International staff writers
Posted on 09 Aug 2015
Print article
A British project to develop a long term insulin-producing implant for treatment of diabetes has received a major infusion of funding that will allow it to proceed with its five-year work plan.

The Oxford Islet Transplant Program at the University of Oxford (United Kingdom) is a member of the DRIVE (Diabetes Reversing Implants with enhanced Viability and long-term Efficacy) consortium, which comprises fourteen partners from seven European countries. The University of Oxford component was recently awarded EUR 8.9 million (GBP 6.37 million) funding from the European Union’s Horizon 2020 – Research and Innovation Framework Program.

Currently the main treatment for diabetes is the daily injection of insulin. In patients where control is poor, transplantation of pancreatic cells is possible. However there are challenges with this therapy including the short supply of donor pancreases, the need to use three to four pancreases to get enough beta-cells for treatment and poor graft survival and retention at the transplant site. The DRIVE consortium will address these challenges by developing a completely new system to deliver pancreatic beta-cells effectively in a targeted and protected fashion. DRIVE’s five-year work plan will include animal testing, with a view to human testing at the end of the project.

Dr. Paul Johnson, director of the Oxford Islet Transplant Program and professor of pediatric surgery at the University of Oxford, said, "Over the past 10 years, the transplantation of insulin-producing pancreatic cells known as islet cells (that can sense blood sugar levels and release insulin to maintain normal sugar levels) has achieved very promising results in adults who have developed the severest complications from insulin-dependent diabetes. The challenge is to now make sure that more people can benefit from this minimally-invasive treatment."

Related Links:

University of Oxford


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Tabletop Centrifuge
Mikro 185
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.