We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




Neuroscience Research to Benefit from 3-D Printing of Brain-Like Structures

By LabMedica International staff writers
Posted on 12 Aug 2015
Print article
Image: The Connex Objet350 3-D printer represents the current state of the art in polymer rapid prototyping systems (Photo courtesy of Stratasys Ltd.).
Image: The Connex Objet350 3-D printer represents the current state of the art in polymer rapid prototyping systems (Photo courtesy of Stratasys Ltd.).
Advanced three-dimensional printing techniques were used to generate a biological construct that incorporated neural cells and mimicked brain cell activities for use in applications ranging from cell behavior studies to improving understanding of brain injuries and neurodegenerative diseases.

Researchers have attempted to study the brain by modeling the architecture using two dimensional (2-D) in vitro cell culturing methods. While those platforms attempt to mimic the in vivo environment, they do not truly resemble the three dimensional (3-D) microstructure of neuronal tissues. Development of an accurate in vitro model of the brain remains a significant obstacle to understanding the functioning of the brain at the tissue or organ level.

Investigators at the ARC Centre of Excellence for Electromaterials Science (North Wollongong, NSW, Australia) applied a 3-D printing approach to the problem of developing a useful in vitro brain model. They reported in the July 14, 2015, online edition of the journal Biomaterials that they had developed a new method to bioprint 3-D brain-like structures consisting of discrete layers of primary neural cells encapsulated in hydrogels.

Brain-like structures were constructed with a Stratasys Ltd. (Rehovot, Israel) Connex Objet350 3D printer using a bio-ink consisting of a novel peptide-modified biopolymer, gellan gum-RGD (RGD-GG), combined with primary cortical neurons. The ink was optimized for a modified reactive printing process and developed for use in traditional cell culturing facilities without the need for extensive bioprinting equipment. Furthermore, the peptide modification of the gellan gum hydrogel was found to have a profound positive effect on primary cell proliferation and network formation. Neural cell viability combined with the support of neural network formation demonstrated the cell supportive nature of the matrix.

"This study highlights the importance of integrating advances in 3-D printing, with those in materials science, to realize a biological outcome," said senior author Dr. Gordon Wallace, head of the ARC Centre of Excellence for Electromaterials Science.

"This paves the way for the use of more sophisticated printers to create structures with much finer resolution. We are still a long way from printing a brain but the ability to arrange cells so as they form neuronal networks is a significant step forward."

Related Links:

ARC Centre of Excellence for Electromaterials Science
Stratasys Ltd.


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Unit-Dose Packaging solution
HLX
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Laboratory Electric Thermostat
DNP-9025A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.