We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Monkeys Protected from MERS Infection by Synthetic DNA Vaccine

By LabMedica International staff writers
Posted on 01 Sep 2015
Print article
Image: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) particle envelope proteins immunolabeled with rabbit HCoV-EMC/2012 primary antibody and goat anti-rabbit 10 nanometer gold particles (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).
Image: Middle East Respiratory Syndrome Coronavirus (MERS-CoV) particle envelope proteins immunolabeled with rabbit HCoV-EMC/2012 primary antibody and goat anti-rabbit 10 nanometer gold particles (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).
A synthetic DNA vaccine directed against the Middle East Respiratory Syndrome's (MERS) spike protein was found to completely protect rhesus macaques from developing pneumonia after having been exposed to the live virus.

MERS is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification in 2012, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. During a recent outbreak in South Korea that infected more than 181 people and caused more than 30 deaths, rapid human-to-human transmission was documented with in-hospital transmission the most common route of infection.

Investigators at the University of Pennsylvania (Philadelphia, USA) and colleagues from several other research institutions reported in the August 19, 2015, online edition of the journal Science Translational Medicine that they had developed a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels.

Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia.

Results presented in this paper demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.

"The significant recent increase in MERS cases, coupled with the lack of effective antiviral therapies or vaccines to treat or prevent this infection, have raised significant concern," said senior author Dr. David B. Weiner, professor of pathology and laboratory medicine at the University of Pennsylvania. "Accordingly the development of a vaccine for MERS remains a high priority."

Related Links:

University of Pennsylvania


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Histamine ELISA
Histamine ELISA
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.