We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nucleoside Supplementation Reduces Genomic Damage in Induced Pluripotent Stem Cells

By LabMedica International staff writers
Posted on 14 Sep 2015
Print article
Image: DNA damage (red) in cells submitted to replication stress, similar to those observed during stem cell reprogramming (Photo courtesy of the Spanish National Cancer Research Center).
Image: DNA damage (red) in cells submitted to replication stress, similar to those observed during stem cell reprogramming (Photo courtesy of the Spanish National Cancer Research Center).
Spanish researchers have described a method to reduce the amount of genomic damage incurred during the process that transforms mature adult cells into induced pluripotent stem cells (iPSC), thereby making them potentially useful for biomedical applications.

The reasons behind the genomic instability observed in iPSCs remain mostly unknown. Investigators at the Spanish National Cancer Research Center (Madrid, Spain; www.cnio.es) recently suggested that this genomic instability was similar to the phenomenon of oncogene-induced replication stress, and that the expression of reprogramming factors induced replication stress.

Replication stress is defined as slowing or stalling in DNA replication fork progression. It arises from many different sources, which are considered as replication barriers such as telomeres, repetitive sequences, DNA lesions and misincorporation of ribonucleotides, secondary DNA structures, DNA–RNA hybrids, dormant replication origins, collisions between replication and transcription complexes, hypo-acetylation and compaction of chromatin, early-replicating fragile sites (ERFSs) and common fragile sites (CFSs). Overexpression or constitutive activation of oncogenes has been cited as an emerging source of replication stress.

The Spanish investigators reported in the August 21, 2015, online edition of the journal Nature Communications that increasing the levels of the protein checkpoint kinase 1 (CHK1) reduced reprogramming-induced replication stress and increased the efficiency of iPSC generation. Similarly, nucleoside supplementation during reprogramming reduced the load of DNA damage and genomic rearrangements during the iPSC generation process. The data revealed that lowering replication stress during reprogramming, genetically or chemically, provided a simple strategy to reduce genomic instability in mouse and human iPSCs.

First author Dr. Sergio Ruiz, a researcher in the genomic instability group at the Spanish National Cancer Research Center, said, "Based on previous research performed by the group, we knew that an additional input of nucleoside reduces replication stress, probably by facilitating the successful replication of DNA as it increases the rate of cell division during the reprogramming process."

Related Links:

Spanish National Cancer Research Center


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.