Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mathematical Models Guide Microliter Doses of Drugs to Specific Pathological Sites in the Lungs

By LabMedica International staff writers
Posted on 16 Sep 2015
A recent paper described a novel technique for precise delivery of microliter quantities of drugs directly to selected pathological areas in the lungs.

In order to treat lung diseases such as cystic fibrosis, bronchopneumonia, chronic obstructive pulmonary disease, and lung cancer, drugs are administered in a systemic fashion, either orally or by aerosol inhalation. Large amounts of the drug have to be given in order to achieve therapeutic levels at the pathological site, and these doses may cause adverse effects to other organs in the body.

Investigators at Columbia University (New York, NY, USA) reported in the August 31, 2015, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that they had developed a method for the precise delivery of drugs to a designated area of the lungs, which would lower the required dosage and reduce unwanted side effects.

Their method utilized a soluble liquid plug of very small volume (less than one milliliter) that was instilled into the upper airways. Programmed air ventilation of the lungs was employed to push the plug into a more distal airway to achieve deposition of liquid film onto the lung epithelium at a precisely determined location. The plug volume and ventilation conditions were determined by mathematical modeling of plug transport in a tubular geometry.

The investigators used three different in vivo imaging methods to demonstrate the application of targeted liquid film deposition to the lungs of animals in a rat model system. These results suggests that instillation of microvolumes of liquid into a ventilated pulmonary airway could be an effective strategy to deliver exact doses of drugs to targeted pathologic regions of the lung, especially those inaccessible by bronchoscopy. Using this method increased the in situ efficacy of the drug while minimizing any systemic side effects.

"We envision that our micro-volume liquid instillation approach will enable predictable drug concentrations at the target site, reducing the amount of drug required for effective disease treatment with significantly reduced side effects," said senior author Dr. Gordana Vunjak-Novakovic, professor of biomedical engineering and of medical sciences at Columbia University. "We are fascinated by the opportunities that bioengineering approaches offer to more effectively treat lung disease. The lung is a hugely complex organ that has billions of cells within a hierarchically organized tissue that cannot be built from scratch. Four years ago, we started research of lung regeneration using stem cells and bioengineering methods. And we continue to work with our clinical colleagues to develop new treatment approaches for treating lung disease."

Related Links:

Columbia University



Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
New
Respiratory QC Panel
Assayed Respiratory Control Panel
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.