We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bi-Specific Antibodies Shown to Clear Latent HIV Infections

By LabMedica International staff writers
Posted on 12 Oct 2015
Print article
Image: Schematic representation of HIV DART binding to two distinct antigens simultaneously, redirecting the killer T-cells to destroy HIV-1 infected cells (Photo courtesy of Duke University).
Image: Schematic representation of HIV DART binding to two distinct antigens simultaneously, redirecting the killer T-cells to destroy HIV-1 infected cells (Photo courtesy of Duke University).
Bi-specific antibodies or DARTS (dual-affinity re-targeting proteins) have been used to eliminate latent HIV-infection from patient samples by redirecting polyclonal T-cells to specifically engage with and kill HIV-infected cells that display HIV antigens on their cell membranes.

A patient cannot be deemed cured of HIV infection as long as the virus remains hidden (latent) in some of the patient's lymphocytes. To destroy these latent pathogens requires their activation and clearance.

Towards this end investigators at Duke University (Durham, NC, USA) and colleagues at the biopharmaceutical company MacroGenics, Inc. (Rockville, MD, USA; www.macrogenics.com) employed DARTS that were engineered by MacroGenics, using HIV-targeting antibodies discovered at Duke University.

They described in the September 28, 2015, online edition of the Journal of Clinical Investigation the application of DARTs that comprised a monovalent HIV-1 envelope-binding (Env-binding) arm that had been derived from broadly binding, antibody-dependent cellular cytotoxicity–mediating antibodies known to bind to HIV-infected target cells that were coupled to a monovalent CD3 binding arm designed to engage cytolytic effector T-cells (referred to as HIVxCD3 DARTs). These DARTs were designed to redirect polyclonal T-cells to specifically engage with and kill Env-expressing cells, including CD4+ T-cells infected with different HIV-1 subtypes, thereby obviating the requirement for HIV-specific immunity.

Using lymphocytes from patients on suppressive antiretroviral therapy, the investigators demonstrated that DARTs mediated CD8+ T-cell clearance of CD4+ T-cells that were superinfected with the HIV-1 strain JR-CSF or infected with autologous reservoir viruses isolated from HIV-infected–patient resting CD4+ T-cells. Moreover, DARTs mediated CD8+ T cell clearance of HIV from resting CD4+ T-cell cultures following induction of latent virus expression.

“This is a great opportunity for MacroGenics to expand our DART platform for therapeutics applications beyond oncology and autoimmune disorders and into infectious diseases,” said Dr. Scott Koenig, president and CEO of MacroGenics. “We are encouraged by our proof-of-concept studies that show HIV DART molecules to be potent immunotherapeutic agents with the potential to reduce HIV reservoirs in patients.”

“Because we are targeting a region of the virus envelope that appears in all mutations of the virus, we think it will make it much easier to be broadly utilized—at least from our laboratory data,” said senior author Dr. Guido Ferrari, associate professor of surgery, molecular genetics, and microbiology at Duke University. “These DART molecules will facilitate the recognition. We are eager to see how this translates to human studies.”

Related Links:

Duke University
MacroGenics, Inc.


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.