We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cancer Researchers Identify Enzyme That Enables Glucose-Independent Tumor Growth

By LabMedica International staff writers
Posted on 01 Nov 2015
Print article
Image: Molecular model of the enzyme phosphoenolpyruvate carboxykinase (PEPCK) (Photo courtesy of Wikimedia Commons).
Image: Molecular model of the enzyme phosphoenolpyruvate carboxykinase (PEPCK) (Photo courtesy of Wikimedia Commons).
Cancer researchers have identified an enzyme that allows tumor cells to exploit alternative energy sources in order to survive when sources of glucose have been depleted.

Investigators at McGill University (Montreal, Canada) and colleagues from several other research institutes used combined transcriptional-metabolomic network analysis to identify metabolic pathways that could support glucose-independent tumor cell proliferation.

They reported in the October 15, 2015, issue of the journal Molecular Cell that glucose deprivation stimulated rearrangement of the tricarboxylic acid (TCA or Krebs) cycle and early steps of the gluconeogenesis (glucose synthesis) pathway to promote glucose-independent cell proliferation. Glucose limitation promoted the production of phosphoenolpyruvate (PEP) from glutamine via the activity of the enzyme mitochondrial PEP-carboxykinase (PEPCK).

PEPCK is an enzyme that converts oxaloacetate into phosphoenolpyruvate and carbon dioxide. As PEPCK acts at the junction between glycolysis and the Krebs cycle, it causes decarboxylation of a four-carbon molecule, creating a three-carbon molecule. When GTP (guanosine-5'-triphosphate) is present, PEPCK decarboxylates and phosphorylates oxaloacetate for its conversion to phosphoenolpyruvate (PEP), which is the first committed step in gluconeogenesis. As a phosphate is transferred, the reaction produces a GDP (guanosine-5'-diphosphate molecule).

The investigators found that under conditions of glucose deprivation, glutamine-derived PEP was used to fuel biosynthetic pathways normally sustained by glucose, including serine and purine biosynthesis. PEPCK expression was required to maintain tumor cell proliferation under limited-glucose conditions in vitro and tumor growth in vivo, as shown in a mouse model. Elevated PEPCK expression was observed in several human tumor types and was enriched in tumor tissue from non-small-cell lung cancer (NSCLC) patients.

"The fact that PEPCK levels are elevated in some cases of human lung cancer suggests that this enzyme may play a role in the human disease," said senior author Dr. Russell Jones, associate professor of physiology at McGill University. "Our work shows that cancers can use alternative fuel sources to help drive their growth under stressful conditions. This remarkable flexibility is part of what makes cancer so deadly, but offers hope in finding new therapies."

Related Links:

McGill University


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Urine Drug Test
Instant-view Propoxyphene Urine Drug Test
New
Dehydroepiandrosterone Assay
DHEA ELISA

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: The discovery of biomarkers could improve endometrial cancer treatment (Photo courtesy of Mount Sinai)

Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer

Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.