We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Apoferritin-Based Nanocapsules Used to Transport Toxic Anticancer Drug

By LabMedica International staff writers
Posted on 08 Nov 2015
Print article
Image: Structure of the ferritin complex. The toxic anticancer drug daunorubicin was sequestered at the core of the molecule, protected by the protein coat (Photo courtesy of Wikimedia Commons).
Image: Structure of the ferritin complex. The toxic anticancer drug daunorubicin was sequestered at the core of the molecule, protected by the protein coat (Photo courtesy of Wikimedia Commons).
A toxic anticancer therapeutic agent was encapsulated in capsules derived from apoferritin, which sequestered the drug until its selective delivery to cancer cells.

Ferritin is a globular protein complex consisting of 24 protein subunits and is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. Ferritin that is not combined with iron is called apoferritin.

Investigators at Washington State University (Pullman, USA) were looking for a better way to administer the anticancer drug daunorubicin. This drug interacts with DNA by intercalation and inhibition of macromolecular biosynthesis. This inhibits the progression of the enzyme topoisomerase II, which relaxes supercoils in DNA for transcription. Daunorubicin stabilizes the topoisomerase II complex after it has broken the DNA chain for replication, preventing the DNA double helix from being resealed and thereby stopping the process of replication. The drug is administered via rapid intravenous infusion. It cannot be given intramuscularly or subcutaneously, since it may cause extensive tissue necrosis. If administered into the spinal canal, it will cause extensive damage to the nervous system and may lead to death.

To circumvent daunorubicin's toxic properties the investigators loaded a mixture of the hydrophobic drug and hydrophilic poly-L-aspartic acid (PLAA) into molecules of apoferritin under slightly acidic conditions that caused the apoferritin molecules to swell. Back at normal pH, the surface of the drug-carrying apoferritin capsules was modified with hyaluronic acid (HA), which targeted the capsules to the cancer cells' to the HA-receptor CD44.

The drug-bearing capsules were used to treat cultures of human embryonic lung MRC-5 cells and lung cancer A549 cells. Results published in the October 2015 issue of the journal Biomaterials Science revealed that the drug was maintained within the capsules until delivery and subsequent uptake by the cancer cells. Release of the drug by the acidic environment of the cancer cells resulted in death of more than 70% of them with no damage to normal cells.

"Our efficiency in killing the cancer cell was very high with no toxicity to normal cells,'' said senior author Dr. Yuehe Lin, professor of mechanical and materials engineering at Washington State University. "At the cell level, we were able to demonstrate it was very effective.''

Related Links:

Washington State University


New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Liquid Based Cytology Production Machine
LBP-4032
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.