We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Thermophilic Archaeal Lipids Stabilize Drug-Delivery Liposomes

By LabMedica International staff writers
Posted on 18 Nov 2015
Print article
Image: S. islandicus being grown in laboratory mass culture (Photo courtesy of the University of Southern Denmark).
Image: S. islandicus being grown in laboratory mass culture (Photo courtesy of the University of Southern Denmark).
The possibility of using lipids extracted from microorganisms adapted to living in conditions of extreme heat and acidity to form liposomes for oral drug-delivery, which would able to survive passage through the harsh conditions of the stomach, was discussed in a recent paper.

To develop an oral drug delivery system suited to protect labile drug compounds like peptides and proteins against the harsh environment in the stomach and upper intestine, investigators at the University of Southern Denmark (Odense) prepared liposomes from phospholipids, cholesterol, and archaeal lipids. As source for the archaeal lipids they used Sulfolobus islandicus, a hyperthermophilic archaeon, whose lipids have not been used in liposomes before.

S. islandicus requires an extreme environment that is 75–80 degrees Celsius hot with an acid pH of two to three. Due to the high temperatures, this organism needs to have extremely stable biomolecules in order to survive. Without increased stability in the membrane the cell would fall apart, and too many molecules would flow in and out of the membrane destroying the chemical gradients the cell uses as energy, while also allowing all the proteins the cell had synthesized to diffuse away, stopping the cell's metabolic processes.

The archaeal membrane still contains phosphate groups and long fatty acid tails, but they also contain ether linkages instead of ester linkages. The ether linkages make the bonds between phosphate groups and hydrocarbons more stable because the carbon connecting the phosphate group and glycerol molecule is more electron-rich than it would be in an ester, making that carbon less electrophilic and therefore less chemically reactive. This allows the ester-linked phospholipid to be more stable and less susceptible to breakdown from large amounts of increased thermal energy. This contributes to the archaea's ability to live in such extreme environments.

The investigators isolated cell membrane lipids from S. islandicus cultures and combined them with conventional phospholipids (from egg yolk or soybean oil) and cholesterol in order to make liposomes. The mixture contained 18% S. islandicus lipid molecules and 78% phospholipids/cholesterol. The liposomes were loaded with a dye, so their fate could be determined following exposure to bile salts from gastric juice.

Results published in the September, 30, 2015, issue of the International Journal of Pharmaceutics revealed that 75% of liposomes remained intact in low bile salt concentrations for up to 90 minutes. In contrast, only 10% were still intact at high bile salt concentrations. Both the low and high concentrations were within the range that is natural in a normal human stomach.

The investigators wrote that, "Our findings showed that crude archaeal lipid extracts have, to a certain extent, stabilizing effects on liposomes similar to purified tetraether lipid fractions tested previously."

Related Links:

University of Southern Denmark


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
New
Ross River Virus Test
Ross River Virus Real Time PCR Kit
New
MTHFR Mutation Test
REALQUALITY THROMBO MTHFR

Print article

Channels

Molecular Diagnostics

view channel
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen.... Read more

Immunology

view channel
Image: New insights into preterm infant immunity could inform care (Photo courtesy of 123RF)

New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood

Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more

Pathology

view channel
Image: As tumor cells flow through these microfluidic chambers, they are subjected to increasing shear stress and sorted based on their adhesion strength (Photo courtesy of UC San Diego)

Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread

Ductal carcinoma in situ (DCIS), a type of early-stage breast cancer, is often referred to as stage zero breast cancer. In many cases, it remains harmless and does not spread beyond the milk ducts where... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.