We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inactivated Bacteria and Excreted Factors for Colorectal Cancer Treatment

By LabMedica International staff writers
Posted on 22 Nov 2015
Print article
Image: Micrograph of the Gram-positive bacillus C. sporogenes (Photo courtesy of the University of Pennsylvania).
Image: Micrograph of the Gram-positive bacillus C. sporogenes (Photo courtesy of the University of Pennsylvania).
Inactivated Clostridium sporogenes bacteria and medium harvested after growth of the bacteria were found to be potent inhibitors of colorectal cancer cells growing on two- and three-dimensional culture platforms.

Since they rely on oxygen molecules to damage the DNA of cancer cells, traditional cancer treatments such as chemotherapy and radiation therapy have limited efficacy for the treatment of colorectal cancer due to reduced blood flow and the lack of oxygen and nutrient flow in the tumor environment.

While bacterial cancer therapy has the potential to overcome the hypoxia problem, it comes with the risk of toxicity and infection. To circumvent these issues, investigators at Nanyang Technological University (Singapore) studied the antitumor effects of non-viable bacterial derivatives of Clostridium sporogenes, an anaerobic, rod-shaped bacterium that produces oval, subterminal endospores and is commonly found in soil. Unlike C. botulinum, it does not produce the botulinum neurotoxins.

The non-viable derivatives examined in this study were heat-inactivated C. sporogenes bacteria (IB) and secreted bacterial proteins in culture media, known as conditioned media (CM). The effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on two-dimensional and three-dimensional platforms.

Results reported in the October 28, 2015, online edition of the journal Scientific Reports revealed that IB significantly inhibited cell proliferation of CT26 cells to 6.3% of the control in 72 hours for the two-dimensional monolayer culture. In the three-dimensional spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the two-dimensional and three-dimensional models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the three-dimensional model was less inhibitory than that of CM.

"We found that even when the C. sporogenes bacteria is dead, its natural toxicity continues to kill cancer cells, unlike the conventional chemotherapy drugs which need oxygen to work," said senior author Dr. Teoh Swee Hin, professor of chemical and biomedical engineering at Nanyang Technological University. "While other research groups have experimented with bacteria therapy to destroy cancer cells, the biggest problem is that live bacteria will grow and proliferate, posing a high risk of infection and increased toxicity to patients. In the NTU study, as the bacteria were already killed by heat, there was no risk of the bacteria multiplying and causing more harm than the desired dose meant to kill colorectal cancer cells."

The next step will be to isolate specific bacterial components that help to kill tumor cells and to develop them into a usable therapy format.

Related Links:
Nanyang Technological University


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.