We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Advanced Gene Therapy Cures Cystic Fibrosis in Culture and Mouse Models

By LabMedica International staff writers
Posted on 01 Dec 2015
Print article
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).
Image: Structure of the protein encoded by the CFTR gene (Photo courtesy of Wikimedia Commons).
Improvements in gene therapy technology enabled restoration of ion channel function in cultures of cells from cystic fibrosis (CF) patients and in a CF mouse model.

In cystic fibrosis, mutations of the CFTR (cystic fibrosis transmembrane conductance regulator) gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas, and other organs. Complications include thickened mucus in the lungs with frequent respiratory infections, and pancreatic insufficiency giving rise to malnutrition and diabetes. These conditions lead to chronic disability and reduced life expectancy.

Gene therapy holds promise for a curative treatment applicable to all CF patients. The various viral vector-based clinical trials conducted in the past have demonstrated safety and tolerance of different vectors, but none have led to a clear and persistent clinical benefit. In the current study, investigators at KU Leuven (Belgium) described how recent clinical breakthroughs in adeno-associated virus-(rAAV) based gene therapy encouraged them to re-explore a rAAV approach for CF.

Adeno-associated virus (AAV) is a small, benign virus found in humans and some other primate species. The virus causes a very mild immune response, lending further support to its apparent lack of pathogenicity. Gene therapy vectors using modified AAV can infect both dividing and quiescent cells and persist in an extrachromosomal state without integrating into the genome of the host cell. These features make AAV a very attractive candidate for creating viral vectors for gene therapy.

The investigators evaluated the preclinical potential of rAAV gene therapy for CF to restore chloride and fluid secretion in two complementary models: intestinal organoids derived from CF subjects and a CF mouse model, an important milestone towards the development of a clinical rAAV candidate for CF gene therapy. Towards this end, they engineered a rAAV vector containing the gene for a truncated form of CFTR combined with a short promoter (CMV173) to ensure optimal gene expression.

Results of treatment of mice and cell cultures with the CFTR-rAAV vector were published in the October 28, 2015, online edition of the American Journal of Respiratory and Critical Care Medicine. They provided evidence that rAAV-mediated gene transfer of a truncated CFTR functionally rescued the CF phenotype across the nasal mucosa of CF mice and in patient-derived organoids.

"We administered the rAAV to the mice via their airways. Most of the CF mice recovered. In the patient-derived cell cultures, chloride and fluid transport were restored," said senior author Dr. Zeger Debyser, professor of molecular medicine at KU Leuven. "We must not give CF patients false hope. Developing a treatment based on gene therapy will take years of work. For one thing, our study did not involve actual human beings, only mice and patient-derived cell cultures. Furthermore, we still have to examine how long the therapy works. Repeated doses might be necessary. But gene therapy clearly is a promising candidate for further research towards a cure for cystic fibrosis."

Related Links:

KU Leuven


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Newborn Screening Test
NeoMass AAAC 3.0

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.