We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Development of Neurodegenerative Diseases Linked to Astrocyte Nitric Oxide Signaling

By LabMedica International staff writers
Posted on 15 Dec 2015
Print article
Image: Standard histology H&E (hematoxylin and eosin) staining of tissue from an eight-year-old Alexander disease patient. Rosenthal fibers—the hallmark of the disease—are shown in pink; nuclei are shown in blue (Photo courtesy of Liqun Wang, Feany Laboratory, Brigham and Women\'s Hospital).
Image: Standard histology H&E (hematoxylin and eosin) staining of tissue from an eight-year-old Alexander disease patient. Rosenthal fibers—the hallmark of the disease—are shown in pink; nuclei are shown in blue (Photo courtesy of Liqun Wang, Feany Laboratory, Brigham and Women\'s Hospital).
Nitric oxide (NO) signaling, initiated by brain astrocytes, has been linked to the destruction of neurons that characterizes many neurodegenerative diseases.

Astrocytes are now thought to play a number of active roles in the brain, including the secretion or absorption of neural transmitters and maintenance of the blood–brain barrier.

To study cellular events that occur in the brain during the progress of neurological disorders, investigators at Brigham and Women's Hospital (Boston, MA, USA) developed a fruit fly model of Alexander disease, a rare degenerative neurological disorder caused by astrocyte dysfunction.

Using this model system, the investigators identified astrocyte-derived NO as a signaling molecule triggering astrocyte-mediated neuronal degeneration. NO acted through cGMP signaling in neurons to promote cell death. Astrocytes themselves also degenerated, via the DNA damage response and p53 protein.

Results from the fruit fly model were confirmed in a mouse model. Furthermore, evidence of activation of the NO pathway was detected in samples from human patients with Alexander disease.

"We are excited to be contributing to a growing area of study of how astrocytes contribute to neurodegeneration, and to have uncovered a role for NO as a neuronal cell death signaling molecule," said senior author Dr. Mel B. Feany, a senior pathologist at Brigham and Women's Hospital. "Our findings define a potential mechanism for neuronal cell death in Alexander disease and possibly other neurodegenerative diseases with astrocyte dysfunction."

The study was published in the November 26, 2015, online edition of the journal Nature Communications.

Related Links:

Brigham and Women's Hospital


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.