We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Inhaled Viral Capsids Trigger Systemic Antitumor Response in Mouse Model

By LabMedica International staff writers
Posted on 04 Jan 2016
Print article
Image: Inhaled or injected into tumors of several types of cancer, the shell of Cowpea mosaic virus with infectious components removed turned on the immune system in mice to wipe out tumors and protect against metastases (Photo courtesy of Wikimedia Commons).
Image: Inhaled or injected into tumors of several types of cancer, the shell of Cowpea mosaic virus with infectious components removed turned on the immune system in mice to wipe out tumors and protect against metastases (Photo courtesy of Wikimedia Commons).
The shells of deactivated Cowpea mosaic virus (CPMV) were found have potent adjuvant activity on cancer growth, which was demonstrated by the ability to block immune system suppression in the tumor microenvironment and subsequently to trigger a full-blown systemic antitumor immune response.

The "in situ vaccination" immunotherapy strategy postulates the direct manipulation of tumors to overcome local tumor-mediated immunosuppression and subsequently stimulate systemic antitumor immunity to treat metastases.

As a test of this strategy, investigators at Dartmouth College (Hanover, NH, USA) and their colleagues at Case Western Reserve University (Cleveland, OH, USA) treated mice with lung melanomas with self-assembling virus-like nanoparticles from CPMV.

CPMV's genetic, biological, and physical properties are well characterized, and it can be isolated readily from plants. There are many stable mutants already prepared that allow specific modification of the capsid surface. It is possible to attach a number of different chemicals to the virus surface and to construct multilayer arrays of such nanoparticles on solid surfaces. This gives the natural or genetically engineered nanoparticles a range of properties which could be useful in nanotechnological applications. Furthermore, CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable.

The investigators reported in the December 21, 2015, online edition of the journal Nature Nanotechnology that inhalation of CPMV nanoparticles by mice reduced the size of established B16F10 lung melanoma tumors and simultaneously generated potent systemic antitumor immunity against poorly immunogenic B16F10 introduced into the skin. Full potency required interleukin-12 (IL-12), (interferon-gamma) IFN-gamma, adaptive immunity, and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumor microenvironment as an important part of the antitumor immune response.

CPMV also exhibited clear treatment efficacy and systemic antitumor immunity in ovarian, colon, and breast tumor models in multiple anatomic locations.

"The particles are shockingly potent," said senior author Dr. Steven Fiering, professor of microbiology and immunology at Dartmouth College. "They are easy to make and do not need to carry antigens, drugs, or other immunestimulatory agents on their surface or inside. Because everything we do is local, the side effects are limited, and despite the strength and extent of the immune response no toxicity was found."

Related Links:

Dartmouth College
Case Western Reserve University


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Malaria Rapid Test
OnSite Malaria Pf/Pan Ag Rapid Test
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.