We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Successful Cardiac Repair Depends on Maturity of Transplanted Stem Cells

By LabMedica International staff writers
Posted on 18 Jan 2016
Print article
Image: Micrograph of normal heart cells (cardiomyocytes). Nuclei are shown in blue (Photo courtesy of Yoshida Laboratory, Kyoto University).
Image: Micrograph of normal heart cells (cardiomyocytes). Nuclei are shown in blue (Photo courtesy of Yoshida Laboratory, Kyoto University).
A team of Japanese cells biologists has shown that the likelihood of stem cell therapy successfully repairing damaged heart muscle depends to large extent on the maturity of the stem cells at the time they are transplanted into the damaged organ.

Although transplantation of induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) has been reported in several animal models, the treatment effect was limited, probably due to poor optimization of the injected cells.

To better optimize CMs for transplantation, investigators at Kyoto University (Japan) used in vivo bioluminescence imaging to compare the engraftment efficiency of intramyocardially-injected undifferentiated-iPSCs, day four mesodermal cells, and purified iPSC-CMs 8 days, 20 days, and 30 days after initial differentiation.

They reported in the January 8, 2016, online edition of the journal Scientific Reports that the engraftment efficiency of day 20 CMs was significantly higher compared to other cell populations. Transplantation of day 20 CMs into the infarcted hearts of immunodeficient mice showed good engraftment, and echocardiography showed significant functional improvement by cell therapy. Moreover, the imaging signal at three months post injection indicated engrafted CMs proliferated in the host heart. These results suggested that day 20 CMs had very high engraftment, proliferation, and therapeutic potential in host mouse hearts.

"Cells of different maturation will be mixed and transplanted together, but heart cells at different stages could behave very differently," said first author Dr. Shunsuke Fukakoshi. "We need to test animals bigger than mice."

Related Links:

Kyoto University


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Lab Sample Rotator
H5600 Revolver
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.