We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking ERK Signaling Inhibits Growth of Some Pancreatic Cancer Cell Lines

By LabMedica International staff writers
Posted on 19 Jan 2016
Print article
Image: X-ray structure of the ERK2 MAP kinase in its active form. Phosphorylated residues are displayed in red (Photo courtesy of Wikimedia Commons).
Image: X-ray structure of the ERK2 MAP kinase in its active form. Phosphorylated residues are displayed in red (Photo courtesy of Wikimedia Commons).
A recent paper discussed the potential of a drug that suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines by blocking the ERK component of the RAF-MEK-ERK molecular pathway.

More than 95% of pancreatic cancers have KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) mutations. The GTPase KRas protein is an early player in many signal transduction pathways and performs an essential function in normal tissue signaling. The mutation of a KRAS gene is an essential step in the development of many cancers.

Investigators at the University of North Carolina (Chapel Hill, USA) discussed the effectiveness of a drug candidate that limited the growth of KRAS-mutant pancreatic cancer by inhibiting the ERK component of the RAF-MEK-ERK pathway.

RAF (rapidly accelerated fibrosarcoma) kinases are a family of three serine/threonine-specific protein kinases that are related to retroviral oncogenes. RAF kinases participate in the RAS-RAF-MEK-ERK signal transduction cascade, also referred to as the mitogen-activated protein kinase (MAPK) cascade. Activation of RAF kinases requires interaction with RAS-GTPases.

ERKs (extracellular-signal-regulated kinases or classical MAP kinases) are widely expressed protein kinase intracellular signaling molecules that are involved in functions including the regulation of meiosis, mitosis, and postmitotic functions in differentiated cells. Many different stimuli, including growth factors, cytokines, virus infection, ligands for heterotrimeric G protein-coupled receptors, transforming agents, and carcinogens, activate the ERK pathway.

MEK (mitogen/extracellular signal-regulated kinase) is a member of the MAPK signaling cascade that is activated in some cancers. When MEK is inhibited, cell proliferation is blocked and apoptosis (controlled cell death) is induced.

The investigators reported in a paper that was published in the December 24, 2015, online edition of the journal Cancer Cell that direct chemical inhibition of ERK suppressed the growth of a subset of KRAS-mutant pancreatic cancer cell lines and that concurrent phosphatidylinositol 3-kinase (PI3K) inhibition caused synergistic cell death. About half of the human pancreatic cancer cell lines tested in the study responded to the ERK inhibitor. In animal models of KRAS-mutant pancreatic ductal adenocarcinoma, the drug had a significant effect on growth of tumors, causing them to shrink or impairing their progress. ERK inhibitor sensitivity was associated with MYC degradation. MYC is a regulator gene that codes for a transcription factor. The protein encoded by this gene is a multifunctional, nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis, and cellular transformation.

“Inhibitors of other steps of this pathway have disappointingly not worked in RAS-mutant cancers because the pathway is so critical for cancer cells that they find a way to reactivate it, by reactivating ERK,” said senior author Dr. Channing Der, professor of pharmacology at the University of North Carolina. “We investigated inhibitors directly targeting ERK the last step in this pathway, in the hope that the cancer cell would have more difficulty overcoming that block. When we surveyed a large panel of pancreatic cancer cell lines, about 50% of them were responsive to the inhibitor, and about 50% of them were not responsive. That prompted two broad questions for those that responded: First of all, why did they respond, and secondly, did they acquire resistance over time?”

“We do not think that an ERK inhibitor is just the miracle drug and we are done. We believe these cancers will figure out a way to develop resistance,” said Dr. Der. “And we believe that while these ERK inhibitors may be better than existing drugs targeting this pathway in this particular cancer, to really activate a successful long-term response in the patient, we are going to have to identify another inhibitor that will work in combination with the ERK inhibitor to overcome resistance. Our guess now is that an inhibitor capable of degrading MYC might do the trick, but we are still looking for the best drug combinations.”

Related Links:

University of North Carolina


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.