We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Induced Pluripotent Stem Cells Flourish in Novel 3D Culture System

By LabMedica International staff writers
Posted on 26 Jan 2016
Print article
Image: Depiction of an iPSC colony emerging in a three-dimensional gel culture system (Photo courtesy of Dr. Matthias Lutolf, Ecole Polytechnique Fédérale de Lausanne).
Image: Depiction of an iPSC colony emerging in a three-dimensional gel culture system (Photo courtesy of Dr. Matthias Lutolf, Ecole Polytechnique Fédérale de Lausanne).
Stem cell researchers have developed a three-dimensional (3D) gel-based culture system that optimizes production of induced pluripotent stem cells (iPSCs).

iPSCs are derived from mature, adult cells that have been genetically reprogrammed to revert to a stem cell-like state. These cells can then be reprogrammed to grow and mature into a wide range of different cell types. Since the discovery of iPSCs, numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional cell-culture system. Surprisingly, nothing was known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming.

To fill this gap in stem cell knowledge investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) analyzed how reprogramming of somatic cells occurred within engineered three-dimensional extracellular matrices. By modulating stiffness, degradability, and biochemical composition of a gel-based microenvironment, they identified a previously unknown role for biophysical effectors in the promotion of iPSC generation.

They reported in the January 11, 2016, online edition of the journal Nature Materials that the physical cell confinement imposed by the 3D microenvironment boosted reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodeling.

"We try to simulate the three-dimensional environment of a living tissue and see how it would influence stem cell behavior," said senior author Dr. Matthias P. Lutolf, head of the laboratory of stem cell bioengineering at Ecole Polytechnique Fédérale de Lausanne. "But soon we were surprised to see that cell reprogramming is also influenced by the surrounding microenvironment. Each cell type may have a "sweet spot" of physical and chemical factors that offer the most efficient transformation. Once you find it, it is a matter of resources and time to create stem cells on a larger scale."

The investigators pointed out that their 3D culture protocol could be readily scaled up to produce stem cells for various applications on an industrial scale.

Related Links:

Ecole Polytechnique Fédérale de Lausanne


Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Tabletop Centrifuge
Mikro 185

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.