Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




First High-Throughput Imaging Platform for Predicting Kidney Toxicity of Chemicals

By LabMedica International staff writers
Posted on 27 Jan 2016
Researchers have developed a high-throughput platform of automated cellular imaging that efficiently and accurately predicts renal toxicity of chemical compounds without animal testing, providing an improved approach to development of safer medicines and other chemical products.

Researchers at A*STAR’s (Agency for Science, Technology and Research) Bioinformatics Institute (BII; Singapore) and Institute of Bioengineering and Nanotechnology (IBN; Singapore) developed the platform based on an approach combining cell culture, imaging, and computational methods. The system could prove invaluable to pharmaceutical companies as well as companies in food, nutrition, cosmetics, consumer care, environmental, and other chemical-dependent sectors.

About 20% of hospital or community acquired cases of acute kidney injury can be attributed to nephrotoxic drugs. Currently there is no accurate method for screening large numbers of potentially nephrotoxic compounds with diverse chemical structures. Existing approaches for predicting compound toxicity include animal testing, which involves ethical issues, high costs, and long turnaround times that result in low throughput, making it unsuitable for screening the increasing numbers of potentially nephrotoxic compounds used in products. Animal testing may also result in poor prediction of human toxicity due to interspecies differences. Other methods of nephrotoxicity screening are also slow, laborious, and costly, or may require prior knowledge of compound chemical structure or mechanism of action.

The researchers have been developing cell-based screening methods that address this critical need, particularly as animal testing bans for cosmetics have been implemented in the EU, Norway, India, and Israel, with many more countries expected to follow suit. They recently reported the first and only cell-based renal screening platforms that can predict nephrotoxicity with high accuracy. Improving on this, they have now developed an imaging-based method that can be used to test much larger numbers of compounds.

Dr. Lit-Hsin Loo, study coauthor and BII principal investigator, said “By automatically analyzing more than 25,000 microscopy images of cells treated with different compounds, we were able to identify phenotypic signatures of kidney cells that can be used to predict the in vivo toxicity of compounds with diverse structures and mechanisms, with a validated accuracy of 80%–90%.”

In this study, over 2 million individual cells were screened for reactions to over 40 different chemical compounds, including antibiotics, antivirals, chemotherapy drugs, and industrial and agricultural chemicals. Analysis was performed using “cellXpress”, an automated image analysis software developed by Dr. Loo’s team.

Coauthor Dr. Daniele Zink, IBN team leader and principal research scientist, added, “This novel software platform reduces the reliance on existing laborious and time-consuming methods currently available for testing of nephrotoxic compounds, enabling much faster predictions. We will continue to work together to improve and further validate the use of this approach, and hope that our work will help to make products safer for consumers and patients.”

The study, by Su R et al, was published online ahead of print November 27, 2015, in the journal Archives of Toxicology.

Related Links:

Institute of Bioengineering and Nanotechnology at A*STAR
Bioinformatics Institute at A*STAR



New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Coagulation Analyzer
CS-2400
New
Uric Acid and Blood Glucose Meter
URIT-10
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.