We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Synthetic RNA Improves the CRISPR/Cas 9 Genome Editing Tool

By LabMedica International staff writers
Posted on 27 Jan 2016
Print article
Image: Genome editing uses engineered nucleases in conjunction with endogenous repair mechanisms to alter the DNA in a cell. The CRISPR-Cas system takes advantage of a short guide RNA to target the bacterial Cas9 endonuclease to specific genomic loci. Because the specificity is supplied by the guide RNA, changing the target only requires a change in the design of the sequence encoding the guide RNA (Photo courtesy of Thermo Fisher Scientific).
Image: Genome editing uses engineered nucleases in conjunction with endogenous repair mechanisms to alter the DNA in a cell. The CRISPR-Cas system takes advantage of a short guide RNA to target the bacterial Cas9 endonuclease to specific genomic loci. Because the specificity is supplied by the guide RNA, changing the target only requires a change in the design of the sequence encoding the guide RNA (Photo courtesy of Thermo Fisher Scientific).
By replacing natural CRISPR guide RNA with a selectively synthesized version, molecular biologists have developed a modified gene editing technique that gives researchers more precise control in correcting and inactivating genes.

CRISPRs (clustered regularly interspaced short palindromic repeats) are segments of prokaryotic DNA containing short repetitions of base sequences. Each repetition is followed by short segments of "spacer DNA" from previous exposures to a bacterial virus or plasmid. CRISPRs are found in approximately 40% of sequenced bacteria genomes and 90% of sequenced archaea. CRISPRs are often associated with cas genes that code for proteins related to CRISPRs. The CRISPR/Cas complex comprises a prokaryotic immune system that confers resistance to foreign genetic elements such as plasmids and phages and provides a form of acquired immunity. Since 2013, the CRISPR/Cas system has been used in research for gene editing (adding, disrupting, or changing the sequence of specific genes) and gene regulation. By delivering the Cas9 protein and appropriate guide RNAs into a cell, the organism's genome can be cut at any desired location. The conventional CRISPR-Cas9 system is composed of two parts: the Cas9 enzyme, which cleaves the DNA molecule and specific RNA guides (CRISPRs) that shepherd the Cas9 protein to the target gene on a DNA strand.

Investigators at the University of California, San Diego (USA) and Ionis (previously Isis) Pharmaceuticals (Carlsbad, CA, USA) have described an improvement to the classical CRISPR/Cas 9 gene editing technique. They developed drug that was in essence a chemically modified, 29-nucleotide synthetic CRISPR RNA (scrRNA). They showed that this molecule could functionally replace the natural CRISPR crRNA, producing enhanced cleavage activity at a target DNA site with apparently reduced off-target cleavage. Incorporation of rational chemical modifications known to protect against nuclease digestion and stabilize RNA–RNA interactions in crRNA yielded a scrRNA with enhanced activity compared with the unmodified crRNA and comparable gene disruption activity to the previously published single guide RNA.

“The RNA-based drugs we developed in this study provide many advantages over the current CRISPR/Cas9 system, such as increased editing efficiency and potential selectivity,” said senior author Dr. Don Cleveland, professor of cellular and molecular medicine at the University of California, San Diego. “In addition, they can be synthesized efficiently, on an industrial scale and in a commercially feasible manner today. These findings provide a platform for multiple therapeutic applications, especially for nervous system diseases, using successive application of designer CRISPR RNA drugs.”

Related Links:

University of California, San Diego
Ionis (previously Isis) Pharmaceuticals


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Lab Sample Rotator
H5600 Revolver
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.