We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Viral Protein Coat-Based Nanoparticle Delivery System Targets Breast Cancer Cells

By LabMedica International staff writers
Posted on 15 Feb 2016
Print article
Image: Hepatitis E virus capsids can resist passing through the digestive system. These virus-like particles can be modified to target specific cell types and could be used to carry vaccines or drugs into the body through the oral route. (Photo courtesy of Marie Stark, University of California, Davis).
Image: Hepatitis E virus capsids can resist passing through the digestive system. These virus-like particles can be modified to target specific cell types and could be used to carry vaccines or drugs into the body through the oral route. (Photo courtesy of Marie Stark, University of California, Davis).
A novel transport system for targeted delivery of toxic chemotherapeutic agents or labile protein-based vaccines was based on nanoparticles fashioned from empty hepatitis E virus capsids.

Since hepatitis E is transmitted through the digestive system and viral RNA is present in the stools of patients with the disease, investigators at the University of California, Davis (USA) speculated that the viral protein coat would protect whatever compounds were trapped within.

The investigators treated empty hepatitis E virus particles so that five surface-exposed residues were mutated to cysteine to allow conjugation to maleimide-linked chemical groups via thiol-selective linkages. The engineered virus-like nanoparticles were then covalently conjugated to a breast cancer recognized ligand, LXY30 and an amine-coupled near-infrared fluorescence dye.

The viral nanoparticles were evaluated for ability to bind and enter a breast cancer cell line and for tumor targeting in vivo to breast cancer tissue in mice. Results published in the February 1, 2016, issue of the journal Nanomedicine revealed that the engineered virus-like nanoparticle not only targeted cancer cells, but also failed to interact with native hepatitis E virus antibodies due to epitope disruption at the antibody-binding site.

This study demonstrated that chemical conjugation with target ligand was capable of eliciting uptake of nanoparticles specifically into breast cancer cells. In vivo and ex vivo imaging confirmed the specific uptake of these nanoparticles by mouse breast tumors. A novel feature of these viral-based nanoparticles is that they were able to conjugate synthetic macromolecules and non-proteinogenic amino acids without compromising particle integrity. In addition, the preserved interior surface of the nanocapsid enabled the encapsulation of negatively charged payloads such as microRNA.

Related Links:

University of California, Davis


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Auto-Chemistry Analyzer
CS-1200
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.