We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




LDL-DHA Nanoparticles Selectively Eradicate Liver Tumors in Rat Model System

By LabMedica International staff writers
Posted on 22 Feb 2016
Print article
Image: Structure of LDL (low-density lipoprotein) (Photo courtesy of MP Biomedicals).
Image: Structure of LDL (low-density lipoprotein) (Photo courtesy of MP Biomedicals).
Uptake of low-density lipoprotein (LDL) particles loaded with the omega-3 fatty acid docosahexaenoic acid (DHA) by liver cancer cells resulted in destruction of established tumors in a rat liver cancer model.

While dietary intake of DHA has been implicated in protecting patients with viral hepatitis B or C from developing liver cancer, little is known about the effects of DHA on established solid tumors.

In order to deliver a higher concentration of DHA to liver cancer cells than could be achieved through the diet, investigators at the University of Texas Southwestern Medical Center (Dallas, USA) used modified LDL particles as a targeted delivery system.

The investigators administered normal LDL or LDL particles in which the cholesterol had been replaced by DHA to rats with established liver tumors. They found that control rats had large, highly vascularized tumors that contained proliferating cells. However, rats given LDL−DHA had smaller, pale tumors that were devoid of vascular supply and more than 80% of the tumor tissue was necrotic. Four to six days after injection of LDL−DHA, the tumors were three-fold smaller than those of control rats. The liver tissue that surrounded the tumors showed no histologic or biochemical evidence of injury.

Injection of LDL−DHA into the hepatic artery of rats selectively deregulated redox reactions in tumor tissues by increasing levels of reactive oxygen species and lipid peroxidation, depleting and oxidizing glutathione and nicotinamide adenine dinucleotide phosphate, and significantly down-regulating the antioxidant enzyme glutathione peroxidase-4. Remarkably, the redox balance in surrounding normal liver tissues was not disrupted.

“This approach offers a potentially new and safe way of treating liver cancer, and possibly other cancers,” said senior author Dr. Ian Corbin, assistant professor of medicine at the University of Texas Southwestern Medical Center. “The method utilizes the cholesterol carrier LDL, combined with fish oil to produce a unique nanoparticle that is selectively toxic to cancer cells.”

“This research study clearly demonstrates the anticancer potential of omega-3 fatty acids,” said Dr. Corbin. “We knew that cancer cells like to take up LDL in order to acquire cholesterol and other lipids to help build their cell membranes as they proliferate. So what we have here is a classic example of a Trojan horse. The cancer cell thinks it is getting cholesterol to provide the nutritional building blocks needed to grow and proliferate. Instead, it gets a payload of fish oil in the form of LDL-DHA nanoparticles that are selectively toxic to cancer cells without harming normal liver cells.”

The study was published in the February 2016 issue of the journal Gastroenterology.

Related Links:

University of Texas Southwestern Medical Center


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution
New
Histamine ELISA
Histamine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.