We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




MicroRNA-Nanoparticle Complexes Prevent Growth of Osteosarcoma Cells

By LabMedica International staff writers
Posted on 08 Mar 2016
Print article
Image: Intermediate-magnification micrograph of an osteosarcoma (center and right of image) adjacent to nonmalignant bone (left-bottom of image) (Photo courtesy of Wikimedia Commons).
Image: Intermediate-magnification micrograph of an osteosarcoma (center and right of image) adjacent to nonmalignant bone (left-bottom of image) (Photo courtesy of Wikimedia Commons).
Cancer researchers developed a nanoparticle delivery system to transport dormancy-inducing microRNAs into osteosarcoma cells.

Osteosarcoma is a cancer that develops in the bones of children and adolescents. It is one of the most aggressive cancers, with only a 15%, five-year survival rate when diagnosed at an advanced metastatic stage. There are approximately 800 new cases diagnosed each year in the USA, and there are no viable treatments.

Investigators at Tel Aviv University (Israel) and their collaborators at Freie Universität Berlin (Germany) established paired active and dormant osteosarcoma tumors in mice and then compared their microRNA activities. MicroRNAs are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, microRNAs help regulate cell maintenance and differentiation.

The investigators identified three novel microRNA regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. Loss of these microRNAs occurred during the switch from non-growing dormant tumors into fast-growing tumors with angiogenic phenotypes.

To maintain the dormant state or to return active tumors to this condition, the investigators planned to insert the three microRNAs into the cancer cells. However, as successful delivery of miRNAs is difficult to achieve, the investigators synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target the cancer cells.

They reported in the January 27, 2016, online edition of the journal ACS Nano that Saos-2 and MG-63 osteosarcoma cells, which generate fast-growing tumors, accepted the nanoparticles. Reconstitution of the dPG-NH2-microRNA polyplexes inside the cells caused reduction of the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1-alpha, and moesin, all of which are critical to cancer angiogenesis and cancer cells’ migration. The microRNAs weakened the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Furthermore, treatment with each of the microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo.

"We saw that the osteosarcoma cells treated with the selected microRNAs were unable to recruit blood vessels to feed their growth," said senior author Dr. Ronit Satchi-Fainaro, professor of physiology and pharmacology at Tel Aviv University. "In order to keep these microRNAs stable in the blood, we needed to encapsulate them in a nanoparticle that circulates in healthy blood vessels, but that disembark and deliver the drug therapy at the leaky blood vessels that exist at tumor sites. We designed a nanomedicine that would have a special activation method at the tumor site in the target cell. The mice treated with the nanomedicine lived for six months, which is the equivalent of 25-odd human years. This makes us very optimistic. If we cannot teach tumor cells to be normal, we can teach them to be dormant."

"This has huge potential," said Dr. Satchi-Fainaro, "because the insertion of microRNA affects many, many genes—making it that much more difficult for cancer to avoid them and compensate for their loss with an alternative pathway. I hope our findings will apply to other tumor types as a universal approach to treating cancer."

Related Links:

Tel Aviv University
Freie Universität Berlin


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.