We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




HIV Binding Simulations Reveal How the Virus Invades the Host Cell Nucleus

By LabMedica International staff writers
Posted on 14 Mar 2016
A team of molecular virologists has combined advanced cryoelectron microscopy (cryo-EM) with the processing power of two supercomputers to develop a model that explains how HIV interacts with the host cell factor cyclophilin A (peptidylprolyl isomerase A) to invade the nucleus of human cells.

Cyclophilin A is known to interact with several HIV proteins, including p55 gag, Vpr, and capsid protein, and has been shown to be necessary for the formation of infectious HIV virions. More...
As a result, cyclophilin A contributes to viral diseases such as AIDS, hepatitis C, measles, and influenza A.

Researchers have historically relied on NMR and X-ray diffraction techniques to determine the structures of molecular complexes and proteins that play a role in the causes of various disease states. Structural information about a variety of medically important proteins and drugs has been obtained by these methods. Cryo-EM is a complementary analytical technique that provides near-atomic resolution without requirements for crystallization or limits on molecular size and complexity imposed by the other techniques. Cryo-EM allows the observation of specimens that have not been stained or fixed in any way, showing them in their native environment while integrating multiple images to form a three-dimensional model of the sample.

Investigators at the University of Illinois (Urbana-Champaign, USA) used cryo-EM to establish the structure of cyclophilin A in complex with the assembled HIV-1 capsid at a resolution of eight angstroms. The structure exhibited a distinct cyclophilin A-binding pattern in which the cyclophilin A protein selectively bridged the two capsid protein hexamers along the direction of highest curvature.

The investigators then exploited the combined processing power of two supercomputers to simulate interactions between cyclophilin A and the HIV capsid. Building this model required simulating the interactions of some 64 million atoms.

Results, which were confirmed by solid-state NMR analysis, revealed that the cyclophilin A binding pattern was achieved by single cyclophilin A molecules simultaneously interacting with two virion capsid subunits, in different hexamers, through a previously uncharacterized non-canonical interface.

"We have known for some time that cyclophilin A plays a role in HIV infection," said senior author Dr. Klaus Schulten, professor of physics at the University of Illinois. "We knew every atom of the underlying capsid, and then we put the cyclophilin on top of that, of which we also knew every atom. The HIV capsid has to show some of its surface to the nuclear pore complex so that it docks there properly and can inject its genetic material into the nucleus. Now, we understand a little bit better the HIV virus' strategy for evading cellular defenses. That gives insight into battling the system."

The study was published in the March 4, 2016, online edition of the journal Nature Communications.

Related Links:

University of Illinois



Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Capillary Blood Collection Tube
IMPROMINI M3
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.