We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomedical Engineers Reveal Organ-on-Chip Device for Drug Testing and Organ Repair

By LabMedica International staff writers
Posted on 21 Mar 2016
Print article
Image: When seeded with heart cells, the flexible polymer scaffold contracts with a regular rhythm, just like real heart tissue (Photo courtesy of Boyang Zhang, University of Toronto).
Image: When seeded with heart cells, the flexible polymer scaffold contracts with a regular rhythm, just like real heart tissue (Photo courtesy of Boyang Zhang, University of Toronto).
A soft, biodegradable polymer was used to form a three-dimensional organ-on-chip device for growth of artificial organs that could be used for drug testing or the repair or replacement of damaged organs.

Poly(octamethylene maleate (anhydride) citrate) (POMaC) is a soft, biodegradable elastomer with the potential to be a good biomaterial for use in scaffolds for soft tissue engineering. POMaC is notable for its dual cross-linking mechanism that allows the engineer to manipulate the resultant mechanical properties of the material during preparation.

Investigators at the University of Toronto (Canada) used POMaC to fashion "AngioChip" scaffolds comprising a series of thin layers about 50 to 100 micrometers wide, stamped with a pattern of nanopore and micro-hole channels. The layers, which resembled computer microchips, were then stacked into a three-dimensional structure of synthetic blood vessels. The scaffold was bathed in media containing living cells. The cells rapidly attached to the inside and outside of the channels and began growing.

The investigators reported in the March 7, 2016, online edition of the journal Nature Materials that incorporation of nanopores and micro-holes in the vessel walls enhanced permeability, and permitted intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. They also showed that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips processed clinically relevant drugs delivered through the vasculature, and that millimeter-thick cardiac tissues could be engineered in a scalable manner. Furthermore, AngioChip cardiac tissues implanted into the femoral vessels of rat hindlimbs established immediate blood perfusion.

"It is a fully three-dimensional structure complete with internal blood vessels," said senior author Dr. Milica Radisic, professor of biomedical engineering at the University of Toronto. "It behaves just like vasculature, and around it there is a lattice for other cells to attach and grow. Previously, people could only do this using devices that squish the cells between sheets of silicone and glass. You needed several pumps and vacuum lines to run just one chip. Our system runs in a normal cell culture dish, and there are no pumps; we use pressure heads to perfuse media through the vasculature. The wells are open, so you can easily access the tissue. Our liver actually produced urea and metabolized drugs."

Related Links:

University of Toronto


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.