We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fusion Circular RNAs May Be Linked to Leukemia

By LabMedica International staff writers
Posted on 12 Apr 2016
Print article
Image: A bone marrow aspirate smear showing precursor B-cell acute lymphoblastic leukemia cells. Chromosomal translocations and gene fusions are common in various types of leukemia (Photo courtesy of Wikimedia Commons).
Image: A bone marrow aspirate smear showing precursor B-cell acute lymphoblastic leukemia cells. Chromosomal translocations and gene fusions are common in various types of leukemia (Photo courtesy of Wikimedia Commons).
The activity of noncoding circular RNAs has been linked to the development of leukemia and other cancers.

Chromosomal translocations result in the production of oncogenic fusion proteins that are involved in tumor formation. Whether such genomic alterations also affect noncoding RNAs is unclear, and their impact on circular RNAs (circRNAs) has not been rigorously examined.

Investigators at Beth Israel Deaconess Medical Center (Boston, MA, USA) reported in the March 31, 2016, online edition of the journal Cell that well-established cancer-associated chromosomal translocations gave rise to fusion circRNAs (f-circRNA) that were produced from transcribed exons of distinct genes affected by the translocations. F-circRNAs contributed to cellular transformation, promoted cell viability, and resistance upon therapy and had tumor-promoting properties in animal models.

As chromosomal translocations are common in various types of leukemia, the investigators examined acute promyelocytic leukemia cells, which often carry a translocation between the PML (Promyelocytic leukemia protein) and RAR-alpha (Retinoic acid receptor alpha) genes and acute myeloid leukemia cells, which can harbor a translocation between the MLL (Histone-lysine N-methyltransferase 2A) and AF9 (myeloid/lymphoid or mixed-lineage leukemia; translocated to, 3) genes.

They found abnormal fusion-circular RNAs (f-circRNAs), corresponding to different exons associated with the PML-RAR-alpha gene fusion as well as the MLL-AF9 gene fusion.

Experiments were conducted in a mouse leukemia model that focused on a specific f-circRNA (f-circM9) associated with the MLL-AF9 fusion gene. Results indicated that the activity of f-circM9 in conjunction with other cancer-promoting signals could trigger the disease.

"Cancer is essentially a disease of mutated or broken genes, so that motivated us to examine whether circular RNAs, like proteins, can be affected by these chromosomal breaks," said senior author Dr. Pier Paolo Pandolfi, professor of medicine at Beth Israel Deaconess Medical Center. "These results are particularly exciting because they suggest that drugs directed at fusion-circular RNAs could be a powerful strategy to pursue for future therapeutic development in cancer. Our work paves the way to discovering many more of these unusual RNAs and how they contribute to cancer, which could reveal new mechanisms and druggable pathways involved in tumor progression."

Related Links:

Beth Israel Deaconess Medical Center


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Liquid Based Cytology Production Machine
LBP-4032
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.