We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Cardiomyopathy Linked to Faulty Regulation of Heart Protein Succinylation

By LabMedica International staff writers
Posted on 28 Apr 2016
Print article
Image: A model of the structure of the SIRT5 protein (Photo courtesy of Wikimedia Commons).
Image: A model of the structure of the SIRT5 protein (Photo courtesy of Wikimedia Commons).
The enzyme SIRT5, also known as sirtuin (silent mating type information regulation 2 homolog) 5, was found to play a critical role in maintaining healthy cardiac function by regulating the lysine succinylation modification of heart cell proteins.

Lysine succinylation is a recently discovered protein posttranslational modification (PTM), and SIRT5 is an efficient desuccinylase enzyme. Although many mammalian proteins have been found to be regulated by lysine succinylation and SIRT5, the physiological significance of succinylation and SIRT5 remains unknown.

To better understand the consequences of protein succinylation, investigators at Cornell University (Ithaca, NY, USA) and their colleagues at Ecole Polytechnique Fédérale de Lausanne (Switzerland) profiled acyl-CoA molecules in various mouse tissues. They discovered that different tissues had different acyl-CoA profiles and that succinyl-CoA was the most abundant acyl-CoA molecule in the heart. This observation prompted them to examine protein lysine succinylation in different mouse tissues in the presence and absence of SIRT5.

The investigators reported in the April 5, 2016, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that protein lysine succinylation predominantly accumulated in the heart in mice that had been genetically engineered to lack the gene for Sirt5. Using proteomic studies, they were able to identify many cardiac proteins regulated by SIRT5.

In particular, they found that ECHA (also known as HADHA or hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), alpha subunit), a protein involved in fatty acid oxidation, was a major enzyme that was regulated by SIRT5 and affected heart function. Sirt5 knockout (KO) mice had lower ECHA activity, increased long-chain acyl-CoAs, and decreased ATP in the heart under fasting conditions. On the physiological level, it was found that Sirt5 KO mice developed hypertrophic cardiomyopathy, as evident from the increased heart weight relative to body weight in these animals.

"Our research suggests that perhaps one way to improve heart function is to find a way to improve SIRT5 activity," said senior author Dr. Hening Lin, professor of chemistry and chemical biology at Cornell University.

"The identification of this new role of SIRT5 in cardiomyopathy assigns an important role of this druggable enzyme in one of the major cardiac diseases," said contributing author Dr. Johan Auwerx, professor of energy metabolism at the Ecole Polytechnique Fédérale de Lausanne. "It can be expected that pharmacological interference with these pathways will lead to new therapies for cardiomyopathy that, as such, can extend healthy life span."

Related Links:
Cornell University
Ecole Polytechnique Fédérale de Lausanne
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.