We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Lack of Gene that Protects Mice Promotes Anti-Viral Immunity in Humans

By LabMedica International staff writers
Posted on 08 Jun 2016
Print article
Image: The structure of the Isg15 protein (Photo courtesy of Wikimedia Commons).
Image: The structure of the Isg15 protein (Photo courtesy of Wikimedia Commons).
Researchers have resolved the question of why a gene that plays an important role in protecting mice from viral infection does not have a similar role in humans.

The interferon-stimulated gene 15 (ISG15) codes for a secreted protein (Isg15) whose main cellular function is ISGylation, which is the covalent addition of the protein to cytoplasmic and nuclear proteins - a process similar to ubiquitination.

Isg15 exists intracellularly and extracellularly as a free molecule and as the form conjugated to target proteins. Studies in mice have demonstrated a role for Isg15 in antiviral immunity. By contrast, human Isg15 was shown to have critical immune functions, but not in antiviral immunity. Namely, free extracellular Isg15 was crucial in IFN (interferon)-gamma-dependent antimycobacterial immunity, while free intracellular Isg15 was crucial for USP18 (Ubiquitin specific peptidase 18)-mediated downregulation of IFN-alpha/beta signaling. USP18 is a member of the deubiquitinating protease family of enzymes. It is thought to remove Isg15 adducts from a broad range of protein substrates, a process known as deISGylation.

Investigators at the Icahn School of Medicine at Mount Sinai (New York, NY, USA), in a paper published in the May 19, 2016, online edition of the journal Nature Communications, described Isg15-deficient patients who displayed no enhanced susceptibility to viruses in vivo, in stark contrast to Isg15-deficient mice. Furthermore, fibroblasts derived from Isg15-deficient patients displayed enhanced antiviral protection, while expression of Isg15 weakened viral resistance. The investigators attributed the difference between mice and humans to the requirement of Isg15 to sustain USP18 levels in humans, a mechanism not operating in mice.

“To our pleasant surprise, what does not work in mice works beautifully in humans. If you, as a human, do not have that gene, you may be more able to fight off viral infections than others,” said senior author Dr. Dusan Bogunovic, assistant professor of microbiology and pediatrics at the Icahn School of Medicine at Mount Sinai. "Additionally, if you do get infected, you control it better. You are basically like a vaccine in yourself. You do not necessarily experience the same range and degree of symptoms, but you still develop antibodies and T-cells and everything you need to be ready for the next infection.”

“We believe a drug that turns off Isg15 in humans for a brief amount of time would help many people facing an emerging viral infection - but of course, all this needs to be tested,” said Dr. Bogunovic. “The idea is to develop a pill that people can use to protect against pandemics - or even to help an individual stop an emerging cold sore.”

Related Links:
Icahn School of Medicine at Mount Sinai

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.