We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Excess Elastase Prevents Muscle Regeneration in Duchenne Muscular Dystrophy

By LabMedica International staff writers
Posted on 14 Jun 2016
Print article
Image: A molecular model of the proteolytic enzyme neutrophil elastase (Photo courtesy of Wikimedia Commons).
Image: A molecular model of the proteolytic enzyme neutrophil elastase (Photo courtesy of Wikimedia Commons).
Overabundance of the enzyme neutrophil elastase has been linked to the progression of Duchenne muscular dystrophy (DMD) and the inability of patients afflicted with the disorder to repair damaged muscle.

DMD is caused by mutations in the gene that encodes dystrophin, a protein crucial for maintaining muscle cell integrity and function, and the subsequent disruption of the dystrophin-associated protein complex (DAPC). The mutation occurs on the X-chromosome, and the disease effects about one of every 3,500 boys whose muscle function is so degraded that they die usually before reaching the age of 30. Progressive loss of muscle tissue in DMD is accompanied by fibrosis, chronic inflammation, and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity.

Investigators at the University of Liverpool (United Kingdom) developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. Neutrophil elastase is thought to play a role in degenerative and inflammatory diseases by its proteolysis of collagen-IV and elastin of the extracellular matrix.

The investigators reported in the May 21, 2016, online edition of the journal Scientific Reports that Duchenne-type muscular dystrophy progression in mice was associated with a progressive accumulation of neutrophils and neutrophil-derived elastase. Elastase was toxic to myogenesis leading to decreased myoblast proliferation, increased cell death, and decreased myoblast differentiation, fusion, and myotube growth. Some of these effects were partly dependent on cell adhesion to specific ECM molecules and altogether provided evidence for an additional mechanism through which chronic inflammation and fibrosis might affect DMD pathogenesis.

Senior author Dr. Dada Pisconti, tenure track fellow in biochemistry at the University of Liverpool, said, "Our findings evidence the importance of inflammation in muscular dystrophy and suggest that elevated levels of elastase could play a key role in the progressive muscle degeneration seen in patients affected by DMD. Although there is no cure for muscular dystrophy, improvements in treatments could help control symptoms to improve quality of life. Our next steps are to investigate whether drugs that target elastase are effective and safe as a potential therapy for this disease."

Related Links:
University of Liverpool

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.