We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Custom Designed Peptides Transport Hydrophobic Drug Compounds

By LabMedica International staff writers
Posted on 20 Jun 2016
Print article
Image: Molecular model of a hydrogel consisting of custom peptide fibers with spaces - \"missing teeth\" - that can trap and deliver hydrophobic small-molecule drugs (Photo courtesy of I-Che Li, Rice University).
Image: Molecular model of a hydrogel consisting of custom peptide fibers with spaces - \"missing teeth\" - that can trap and deliver hydrophobic small-molecule drugs (Photo courtesy of I-Che Li, Rice University).
A bioengineering team has designed a novel class of drug-delivery peptides that coalesce into a hydrogel capable of transporting hydrophobic compounds within the hydrophobic cores of the peptide nanofibers.

Multidomain peptides (MDPs) provide biocompatible hydrogel scaffolds that are injectable and space-conforming, allowing for in situ delivery of a variety of drugs. Investigators at Rice University (Houston, TX, USA) demonstrated that through manipulation of the peptide primary sequence, a molecular cavity (missing tooth) could be incorporated into the hydrophobic core of these peptide nanofibers allowing for encapsulation and delivery of small molecule drugs with poor water solubility.

The investigators reported in the June 2, 2016, online edition of the journal Biomacromolecules that the drugs SN-38, daunorubicin, diflunisal, etodolac, levofloxacin, and norfloxacin could be encapsulated and released from multidomain peptide fibers. Steady-state fluorescence and drug release studies showed that hydrogels loaded with SN-38, diflunisal, and etodolac exhibited prolonged drug release profiles due to intrafibrillar drug encapsulation.

"Here, we have done something different - we modify the inside of the fibers," said senior author Dr. Jeffery Hartgerink, professor of chemistry and bioengineering at Rice University. "We remove part of the internal portion of the fiber – that is the missing tooth - and that is a hydrophobic environment. Hydrophilic molecules frequently do not need a delivery mechanism because you can inject them. They are water-soluble, they go into the blood and they are fine. But hydrophobic drugs are challenging to deliver. We load them into the interstices of these fibers, and they can be delivered wherever we inject the hydrogel."

Related Links:
Rice University


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.