We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Blocking MicroRNA Synthesis Reverses Behavior of Tumor-Associated Macrophages

By LabMedica International staff writers
Posted on 22 Jun 2016
Print article
Image: A micrograph showing immune cells (green) attacking tumor cells (red) (Photo courtesy of Dr. Michele De Palma, Ecole Polytechnique Fédérale de Lausanne).
Image: A micrograph showing immune cells (green) attacking tumor cells (red) (Photo courtesy of Dr. Michele De Palma, Ecole Polytechnique Fédérale de Lausanne).
Preventing synthesis of microRNAs in compromised tumor associated macrophages (TAMs) reprograms these cells from being tumor supporting to being tumor suppressing.

TAMs largely express an alternatively activated (or M2) phenotype, which entails immunosuppressive and tumor-promoting capabilities. Reprogramming TAMs towards a classically activated (M1) phenotype might reverse tumor-associated immunosuppression and activate anti-tumor immunity.

To test this possibility, investigators at Ecole Polytechnique Fédérale de Lausanne (Switzerland) used genetic engineering techniques to conditionally delete the microRNA (miRNA)-processing enzyme DICER1 in macrophages. The enzyme Dicer, which is encoded by the DICER1 gene, trims double stranded RNA, to form small interfering RNA (siRNA) or microRNA (miRNA). These processed RNAs are incorporated into the RNA-induced silencing complex (RISC), which targets messenger RNA to prevent translation.

The investigators reported in the June 13, 2016, online edition of the journal Nature Cell Biology that deletion of DICER1 prompted M1-like TAM programming, characterized by hyperactive IFN (interferon)-gamma/STAT1 (signal transducer and activator of transcription 1) signaling. This behavior modification eliminated the immunosuppressive capacity of TAMs and fostered the recruitment of activated cytotoxic T lymphocytes (CTLs) to the tumors. CTL-derived IFN-gamma increased the M1 polarization of DICER1-deficient TAMs and inhibited tumor growth.

Genetic rescue of Let-7 miRNA activity in DICER1-deficient TAMs partly restored their M2-like phenotype and decreased tumor-infiltrating CTLs. These findings suggested that DICER1/Let-7 microRNA activity opposed IFN-gamma-induced, immunostimulatory M1-like TAM activation.

"The most exciting finding was that TAM reprogramming greatly improved the efficacy of immunotherapy," said senior author Dr. Michele De Palma, a tenure track assistant professor at the Ecole Polytechnique Fédérale de Lausanne. "Our results in experimental models of cancer suggest a new therapeutic strategy based on inhibiting the microRNA machinery - or the Let-7 microRNAs - specifically in the TAMs, which may unleash the power of mainstream immunotherapies, such as immune checkpoint inhibitors."

Related Links:
Ecole Polytechnique Fédérale de Lausanne

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.