We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Success of Anti-Leukemia Compound Expected to Boost Drug Development Efforts

By LabMedica International staff writers
Posted on 18 Jul 2016
Print article
Image: An artist’s concept of how a candidate drug fits precisely in BRD9\'s deep bromodomain binding pocket. In preclinical tests, the drug\'s binding prevented AML cells from proliferating (Photo courtesy of Vakoc Lab, Cold Spring Harbor Laboratory).
Image: An artist’s concept of how a candidate drug fits precisely in BRD9\'s deep bromodomain binding pocket. In preclinical tests, the drug\'s binding prevented AML cells from proliferating (Photo courtesy of Vakoc Lab, Cold Spring Harbor Laboratory).
Cancer researchers have identified the active site of a protein required for growth and spread of the blood cancer acute myeloid leukemia (AML), and have designed a drug that blocks the site and suppresses the proliferation of mouse and human AML cell lines in vitro.

AML is a cancer of the myeloid line of blood cells, characterized by the rapid growth of abnormal white blood cells that accumulate in the bone marrow and interfere with the production of normal blood cells. The symptoms of AML are caused by replacement of normal bone marrow with leukemic cells, which causes a drop in red blood cells, platelets, and normal white blood cells. Symptoms include fatigue, shortness of breath, easy bruising and bleeding, and increased risk of infection. AML progresses rapidly and is typically fatal within weeks or months if left untreated.

Investigators at Cold Spring Harbor Laboratory (NY, USA) and their colleagues at the biopharmaceutical company Boehringer Ingelheim (Ingelheim, Germany) reported in the July 4, 2016, online edition of the journal Nature Chemical Biology that AML cells required the BRD9 (Bromodomain-containing protein 9) subunit of the SWI−SNF chromatin-remodeling complex to sustain transcription of the MYC oncogene and the rapid cell proliferation that it caused.

The investigators derived small-molecule inhibitors of the BRD9 bromodomain that selectively suppressed the proliferation of mouse and human AML cell lines. To establish these effects as on-target, they engineered a bromodomain-swap allele of BRD9 that retained functionality despite a radically altered bromodomain pocket. Expression of this allele in AML cells conferred resistance to the antiproliferative effects of the compound series, thus establishing BRD9 as the relevant cellular target.

"We were of course pleased with these results," said senior author Dr. Christopher Vakoc, an associate professor at Cold Spring Harbor Laboratory. "But we set an even higher bar. We wanted to be able to show, unambiguously, how the drug worked - we wanted to prove that its target in AML cells was the bromodomain of the BRD9 protein. As the age of precision medicine begins, this is an important issue, a matter of sink or swim for some candidate drugs. Here we have described a simple new approach that can unambiguously assign the therapeutic effect of a drug to a single binding site."

Related Links:
Cold Spring Harbor Laboratory
Boehringer Ingelheim
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Urine Strips
11 Parameter Urine Strips
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.