We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




RNA Polymerase Mutation Stabilizes Live Virus Vaccines

By LabMedica International staff writers
Posted on 28 Jul 2016
Print article
Image: An atomic-level structural model of coxsackievirus B3 polymerase, which is responsible for making copies of the virus genome. The researchers replaced the orange phenylalanine 364 that is found in two different positions, with the turquoise tryptophan that is larger and covers both positions without needing to move. This causes fewer mutations to be made and reduces the ability of the virus to replicate and cause disease (Photo courtesy of Dr. Olve Peersen, Colorado State University).
Image: An atomic-level structural model of coxsackievirus B3 polymerase, which is responsible for making copies of the virus genome. The researchers replaced the orange phenylalanine 364 that is found in two different positions, with the turquoise tryptophan that is larger and covers both positions without needing to move. This causes fewer mutations to be made and reduces the ability of the virus to replicate and cause disease (Photo courtesy of Dr. Olve Peersen, Colorado State University).
A team of molecular virologists has developed a more effective method for attenuating the replicative capabilities of the coxsackievirus and is using this platform to develop a vaccine for it and other positive-sense single-stranded RNA viruses, a group that includes poliovirus, dengue, and Zika.

During a previous study on coxsackievirus replication, investigators at Colorado State University (Fort Collins, USA) found that when the coxsakievirus RNA-dependent RNA polymerase copied the viral genome, it made three or four random mistakes that allowed the virus to continually evolve and survive.

To establish stable, attenuated mutant strains that could be used for vaccination without danger of back mutation reestablishing full viral pathogenicity, the investigators introduced mutations into the RNA-dependent RNA polymerase.

They reported in the July 1, 2016, issue of The Journal of Biological Chemistry that they had exchanged a phenylalanine molecule in the RNA polymerase with tryptophan. The tryptophan residue caused the polymerase to make fewer mutations, and this reduced the ability of the virus to replicate and cause disease. Back mutations prevented the virus from replicating at all, resulting in its elimination from the host organism.

"We think it is going to work, but we have to show that it will," said senior author Dr. Olve Peersen, professor of biochemistry and molecular biology at Colorado State University. "Trying to outsmart Mother Nature is pretty daunting, especially in these viruses. There are ways that things happen you never anticipate, and the virus finds a way to survive."

Related Links:
Colorado State University


Gold Member
Turnkey Packaging Solution
HLX
Automated Blood Typing System
IH-500 NEXT
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.