We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Expression of Stem Cell Gene Restores Contractile Function to Aged Muscle Cells

By LabMedica International staff writers
Posted on 08 Aug 2016
Print article
Image: From left to right, functioning stem cells, stem cells no longer functioning due to Hutchinson-Gilford Progeria syndrome (HGPS), and stem cells previously not functioning due to HGPS that were rebooted by the embryonic stem cell gene NANOG (Photo courtesy of Stelios Andreadis, University at Buffalo).
Image: From left to right, functioning stem cells, stem cells no longer functioning due to Hutchinson-Gilford Progeria syndrome (HGPS), and stem cells previously not functioning due to HGPS that were rebooted by the embryonic stem cell gene NANOG (Photo courtesy of Stelios Andreadis, University at Buffalo).
Transplanting a stem cell gene into aged muscle cells reversed many indicators of cellular senescence and completely restored the cells' ability to generate contractile force.

Cellular senescence as a result of aging or progeroid diseases, such as Hutchinson-Gilford progeria syndrome, leads to stem cell pool exhaustion that hinders tissue regeneration and contributes to the progression of age related disorders. Furthermore, the ability of adult stem cells to form muscle and generate force declines with aging.

Investigators at the University at Buffalo (NY, USA) examined the possibility of reversing the aging process by transplanting the NANOG gene into aged muscle cells. NANOG is a transcription factor in embryonic stem cells (ESCs) that is thought to be a key factor in maintaining pluripotency.

The investigators inserted NANOG into cells from three different models of aging: cells isolated from aged donors, cells aged in culture, and cells isolated from patients with Hutchinson-Gilford progeria syndrome. They reported in the July 11, 2016, online edition of the journal Stem Cells that expression of NANOG in senescent or progeroid muscle progenitor cells reversed cellular aging and restored completely the ability to generate contractile force.

NANOG worked this magic by enabling reactivation of the Rho-associated protein kinase (ROCK) and transforming growth factor (TGF)-beta pathways - both of which were impaired in senescent cells. Reactivation of these pathways stimulated dormant proteins (actin) to generate cytoskeletons that adult stem cells need to form contractile muscle cells and activated the central regulator of muscle formation, serum response factor (SRF).

"Our research into Nanog is helping us to better understand the process of aging and ultimately how to reverse it," said senior author Dr. Stelios T. Andreadis, professor of chemical and biological engineering at the University at Buffalo. "Not only does Nanog have the capacity to delay aging, it has the potential in some cases to reverse it."

Related Links:
University at Buffalo


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.