We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Magnetically Guided Bacteria Transport Drug-Loaded Liposomes to Hypoxic Tumors

By LabMedica International staff writers
Posted on 24 Aug 2016
Print article
Image: Nanorobotic agents composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug\'s injection point and the area of the body to cure (Photo courtesy of the Montréal Nanorobotics Laboratory, Polytechnique Montréal).
Image: Nanorobotic agents composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug\'s injection point and the area of the body to cure (Photo courtesy of the Montréal Nanorobotics Laboratory, Polytechnique Montréal).
A novel transport system for toxic chemotherapeutic drugs is based on a species of bacteria that can be magnetically guided to a tumor where it releases drug-loaded liposomes into the tumor's hypoxic center.

Investigators at Polytechnique Montréal (Canada) described using Magnetococcus marinus strain MC-1 as the foundation for a novel drug delivery system.

Magnetococcus marinus is a species of Alphaproteobacteria that has the peculiar ability to form a structure called a magnetosome, a membrane encased single-magnetic-domain mineral crystals formed by biomineralization, which allows the cells to orientate along the Earth’s geomagnetic field. In their natural environment, MC-1 cells, each containing a chain of magnetic iron-oxide nanocrystals, tend to swim along local magnetic field lines and towards low oxygen concentrations based on a two-state aerotactic sensing system.

The investigators took advantage of this natural tendency of MC-1 cells by using it to transport liposomes that had been loaded with an anticancer drug. Approximately 70 drug-loaded nanoliposomes were attached to each MC-1 cell, which were guided by a computer-controlled external magnetic field.

In a proof-of-principle study published in the August 15, 2016, online edition of the journal Nature Nanotechnology the bacteria were injected near the tumor in severe combined immunodeficient beige mice and magnetically guided. Results indicated that up to 55% of MC-1 cells penetrated into hypoxic regions of HCT116 colorectal xenografts.

"These legions of nanorobotic agents were actually composed of more than 100 million flagellated bacteria - and therefore self-propelled - and loaded with drugs that moved by taking the most direct path between the drug's injection point and the area of the body to cure," said senior author Dr. Sylvain Martel, professor of medical nanorobotics at Polytechnique Montréal. "The drug's propelling force was enough to travel efficiently and enter deep inside the tumors. This innovative use of nanotransporters will have an impact not only on creating more advanced engineering concepts and original intervention methods, but it also throws the door wide open to the synthesis of new vehicles for therapeutic, imaging and diagnostic agents. Chemotherapy, which is so toxic for the entire human body, could make use of these natural nanorobots to move drugs directly to the targeted area, eliminating the harmful side effects while also boosting its therapeutic effectiveness."

Related Links:
Investigators at Polytechnique Montréal

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
FLU/RSV Test
Humasis FLU/RSV Combo

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.