We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




NADPH Oxidase Inhibitor Treatment Protects Mice from Being Killed by Pneumonia

By LabMedica International staff writers
Posted on 25 Aug 2016
Print article
Image: The lungs of mice co-infected with both influenza and MRSA appear much healthier after combined treatment with antibiotics and an NADPH oxidase inhibitor (right) than they do after antibiotic treatment alone (left) (Photo courtesy of Dr. Keer Sun).
Image: The lungs of mice co-infected with both influenza and MRSA appear much healthier after combined treatment with antibiotics and an NADPH oxidase inhibitor (right) than they do after antibiotic treatment alone (left) (Photo courtesy of Dr. Keer Sun).
Influenza sufferers who develop methicillin-resistant Staphylococcus aureus (MRSA) pneumonia often die from damage caused to their lungs by reactive oxygen species released from necrotic inflammatory cells.

Clinical post-influenza Staphylococcus aureus pneumonia is characterized by extensive lung inflammation associated with severe morbidity and mortality even after appropriate antibiotic treatment. Investigators at the University of Nebraska Medical Center (Omaha, USA) had shown previously that mice infected with influenza were susceptible to MRSA because the ability of their macrophages and neutrophils to kill bacteria by releasing hydrogen peroxide and other reactive oxygen species was suppressed. However, it remained unclear why MRSA-infected influenza patients often died, even after receiving an appropriate antibiotic treatment.

In the current study, which was published in the August 15, 2016, online edition of The Journal of Experimental Medicine, the investigators found that antibiotics rescued nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2)-deficient mice but failed to fully protect wild type animals from influenza and S. aureus co-infection.

Results indicated that the inefficacy of antibiotics against co-infection was attributable to oxidative stress–associated inflammatory lung injury. However, Nox2-induced lung damage during co-infection was not associated with aggravated inflammatory cytokine response or cell infiltration but rather was caused by reduced survival of myeloid cells. Specifically, oxidative stress increased necrotic death of inflammatory cells, thereby resulting in lethal damage to surrounding tissue.

These results demonstrated that influenza infection disrupted the delicate balance between Nox2-dependent antibacterial immunity and inflammation. This disruption led to not only increased susceptibility to S. aureus infection, but also extensive lung damage. Combination treatment of antibiotic and NADPH oxidase inhibitor significantly improved animal survival from co-infection.

"Our results demonstrate that influenza infection disrupts the delicate balance between Nox2-dependent antibacterial immunity and inflammation," said first author Dr. Keer Sun, assistant professor of pathology and microbiology at the University of Nebraska Medical Center. "This not only leads to increased susceptibility to MRSA infection but also extensive lung damage. Treatment strategies that target both bacteria and reactive oxygen species may significantly benefit patients with influenza-complicated MRSA pneumonia."

Related Links:
University of Nebraska Medical Center

Gold Member
Hematology Analyzer
Swelab Lumi
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Thyroxine ELISA
T4 ELISA
New
Rocking Shaker
HumaRock

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.