We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bile Enables Norovirus to Grow in Laboratory Cell Cultures

By LabMedica International staff writers
Posted on 07 Sep 2016
Print article
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Image: Human norovirus particles released into the supernatant of infected cell cultures were detected with electron microscopy (Photo courtesy of the Estes Laboratory, Baylor College of Medicine).
Bile proved to be the key to the first successful growth of norovirus in laboratory cell cultures.

Noroviruses (NoVs) are a leading cause of gastroenteritis globally, yet the host factors required for NoV infection are poorly understood. Human norovirus will not infect any of the species typically used in biomedical research, such as mice, rats, or rabbits nor will it grow in human cell cultures.

After the failure of many previous attempts to cultivate norovirus in cell cultures, investigators at Baylor College of Medicine (Houston, TX, USA) turned to a recently developed human intestinal epithelial cell culture system that included enterocytes. These novel, multi-cellular human cultures, called enteroids, were made from adult intestinal stem cells from patient tissues.

The investigators reported in the August 25, 2016, online edition of the journal Science that novel cell culture system not withstanding, the method was not impressively successful until they added bile, a critical factor of the intestinal milieu. With the addition of bile, the culture system recapitulated the human intestinal epithelium, permitting human host-pathogen studies of previously non-cultivatable pathogens, and allowed the assessment of methods to prevent and treat human NoV infections.

"When we added bile to the cultures, norovirus strains that did not grow before now grew in large numbers," said senior author Dr. Mary Estes, professor of human and molecular virology and microbiology at Baylor College of Medicine. "People have been trying to grow norovirus in the lab for a very long time. We tried for the last 20 years. Despite all the attempts and the success of growing other viruses, it remained a mystery why noroviruses were so hard to work with. We were able to grow norovirus in cultures that mimic the intestinal environment, where the virus naturally grows, by adding bile to the cultures. Bile is critical for several important bacterial pathogens, but this is the first time it has been shown that bile is important for the replication of human intestinal viruses."

Related Links:
Baylor College of Medicine


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.