We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Approach Yields Stable Neural Stem Cell Lines for Neuroscience Research

By LabMedica International staff writers
Posted on 27 Sep 2016
Print article
Image: Neuromuscular tissue engineering: hiNSCs (red) grown in co-culture with skeletal muscle (green), with cell nuclei visualized by blue DAPI staining (Photo courtesy of Dr. Dana M. Cairns, Tufts University).
Image: Neuromuscular tissue engineering: hiNSCs (red) grown in co-culture with skeletal muscle (green), with cell nuclei visualized by blue DAPI staining (Photo courtesy of Dr. Dana M. Cairns, Tufts University).
A team of neurosciences researchers developed a faster and more stable technique for establishing stable human induced neural stem cell (hiNSC) lines through the direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells.

Limited availability of human neurons poses a significant barrier to progress in biological and preclinical studies of the human nervous system. Current stem cell-based approaches of neuron generation are still hindered by prolonged culture requirements, protocol complexity, and variability in neuronal differentiation.

To increase the pool of neurons for research purposes, investigators at Tufts University (Medford, MA, USA) employed direct reprogramming of neonatal fibroblasts and adult adipose-derived stem cells. According to their approach, once removed from mouse embryonic fibroblasts (MEFs) and dissociated into single-cell suspension, hiNSCs robustly differentiated into about 80%–90% betaIII-tubulin (TUJ1)-, MAP2-, and NEUN-positive neurons in as few as four days, independently of media composition.

The authors reported in the August 25, 2016, online edition of the journal Stem Cell Reports that these hiNSCs could be passaged indefinitely and cryopreserved as colonies. When injected into an early stage chicken embryo, the hiNSCs incorporated into the brain as well as the neurons of the peripheral nervous system that innervate tissues in a developing limb. Furthermore, they demonstrated the utility of these cells in co-culture with skeletal muscle as well as a three-dimensional tissue model of the human brain.

“This discovery could help reduce a significant barrier to progress in biological and in vitro studies of the human nervous system,” said senior author Dr. David L. Kaplan, professor of biomedical engineering at Tufts University. “Initial results suggest that hiNSCs are useful for future biomedical applications such as high-throughput drug assays, complex innervated co-cultures, and three dimensional models using normal and diseased cells.”

Related Links:
Tufts University


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.