We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Binding of Cysteine Residues Reduces Severity of Multiple Sclerosis

By LabMedica International staff writers
Posted on 04 Oct 2016
Print article
Image: A model of the crystal structure of adenosine deaminase, one of the protein targets of DMF. The amino acid labeled by DMF is shown in pink, and neighboring residues associated with a human immunodeficiency are shown in yellow (Photo courtesy of The Scripps Research Institute).
Image: A model of the crystal structure of adenosine deaminase, one of the protein targets of DMF. The amino acid labeled by DMF is shown in pink, and neighboring residues associated with a human immunodeficiency are shown in yellow (Photo courtesy of The Scripps Research Institute).
A recent paper explained the mode of action of dimethyl fumarate (DMF), the most effective drug currently in use for the treatment of multiple sclerosis (MS).

MS, which affects more than 200 million people worldwide, is an inflammatory disease in which the myelin sheaths around the axons of the brain and spinal cord are damaged by autoimmune attack, leading to demyelination and scarring as well as a broad spectrum of signs and symptoms.

Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. DMF was developed by Biogen (Cambridge, MA, USA) as a capsule containing microtablets for the treatment of multiple sclerosis, under the code name BG-12. It was approved by the [U.S.] Food and Drug Administration under the trade name Tecfidera for the treatment of adults with relapsing forms of MS in March 2013. Despite the approval, the mechanism of action of DMF has been unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF).

Investigators at the Scripps Research Institute (La Jolla, CA, USA) reported in the September 13, 2016, online edition of the journal Science Signaling that they had succeeded in determining DMF's mechanism of action. They found that DMF, but not MMF, blocked the activation of primary human and mouse T-cells. Using a quantitative, site-specific chemical proteomic platform, they placed the sensitivity of DMF at greater than 2400 cysteine residues in human T-cells. Cysteine residues sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T-cell function. DMF blocked the activation of T-cells by targeting two cysteine residues on the immune cell-signaling enzyme PKCθ, thereby preventing PKCθ from associating with CD28, another protein needed for proper T-cell activation.

“This study shows the value of applying large-scale chemical profiling methods to primary human cells to gain insights into the mechanism of action of an important immunomodulatory drug,” said senior author Dr. Benjamin F. Cravatt, professor of chemical physiology at the Scripps Research Institute.

Related Links:
Biogen
Scripps Research Institute
New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.