We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Drug Shrinks Lung Tumors by Blocking Fatty Acid Synthesis

By LabMedica International staff writers
Posted on 27 Oct 2016
Print article
Image: Photomicrographs show that placebo-treated cells (left) have far more lipid (red) production compared to ND-646 treated cells (right) (Photo courtesy of the Salk Institute).
Image: Photomicrographs show that placebo-treated cells (left) have far more lipid (red) production compared to ND-646 treated cells (right) (Photo courtesy of the Salk Institute).
An experimental drug that blocks the activity of the enzyme that regulates de novo fatty acid synthesis caused a dramatic reduction in the size of tumors in animal models of non-small-cell lung cancer (NSCLC).

Continuous de novo fatty acid synthesis is a common feature of cancer that is required to meet the biosynthetic demands of a growing tumor. This process is controlled by the rate-limiting enzyme acetyl-CoA carboxylase (ACC). When the enzyme is active, the product, malonyl-CoA, is produced. This is a building block for new fatty acids and can inhibit the transfer of the fatty acyl group from acyl CoA to carnitine with carnitine acyltransferase, which inhibits the beta-oxidation of fatty acids in the mitochondria.

Investigators at the Salk Institute (La Jolla, CA, USA) examined the effects of the ACC inhibitor ND-646 - an allosteric inhibitor of the ACC enzymes ACC1 and ACC2 that prevents ACC subunit dimerization - together with developers of the drug at the biotechnology company Nimbus Therapeutics (Cambridge, MA, USA).

They reported in the September 19, 2016, online edition of the journal Nature Medicine that chronic ND-646 treatment of xenograft and genetically engineered mouse models of NSCLC inhibited tumor growth. When administered as a single agent or in combination with the standard-of-care drug carboplatin, ND-646 markedly suppressed lung tumor growth in mouse models of NSCLC. Simultaneous treatment with the pair of drugs caused shrinkage of 87% of tumors as compared to 50% with the standard treatment of carboplatin alone. Treatment with the two drugs did not seem to impair normal cells even as it dramatically slowed cancer growth.

"Cancer cells rewire their metabolism to support their rapid division," said senior author Dr. Reuben Shaw, a professor of molecular and cell biology at the Salk Institute. "Because cancer cells are more reliant on lipid synthesis activity than normal cells, we thought there might be subsets of cancers sensitive to a drug that could interrupt this vital metabolic process."

"This confirms that shutting down endogenous lipid synthesis could be beneficial in some cancers and that inhibitors of the ACC enzyme represent a feasible way to do it," said contributing author Dr. Rosana Kapeller, CSO at Nimbus Therapeutics. "We have taken a novel computational chemistry approach to designing high-potency allosteric inhibitors of this difficult enzyme, and we are very encouraged by the results."

Related Links:
Salk Institute
Nimbus Therapeutics
New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Urine Strips
11 Parameter Urine Strips
New
Auto-Chemistry Analyzer
CS-1200

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.