We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Researchers Describe Aggressive Breast Cancer Molecular Mechanism

By LabMedica International staff writers
Posted on 11 Nov 2016
Print article
Image: The structural model of the SIRT2 protein (Photo courtesy of Wikimedia Commons).
Image: The structural model of the SIRT2 protein (Photo courtesy of Wikimedia Commons).
Cancer researchers have found that SIRT2, a member of the sirtuin family of enzymes, stabilizes Slug, a transcription factor that promotes the development, growth, and spread of basal-like breast cancer.

Overabundance of Slug protein is common in human cancer and represents an important determinant underlying the aggressiveness of basal-like breast cancer (BLBC). Despite its importance, this transcription factor is rarely mutated in BLBC, and the mechanism of its deregulation in cancer remains unknown.

To better understand the link between Slug and BLBC, investigators at Tufts University School of Medicine (Boston, MA, USA) screened BLBC cultures for factors that would stabilize Slug activity.

They reported in the October 25, 2016, online edition of the journal Cell Reports that Slug underwent acetylation-dependent protein degradation and identified the deacetylase SIRT2 as a key mediator of this post-translational mechanism. SIRT2 inhibition rapidly destabilized Slug, whereas SIRT2 overexpression extended Slug stability. SIRT2 deacetylated Slug protein at lysine residue K116 to prevent Slug degradation.

SIRT2 was frequently amplified and highly expressed in BLBC. Genetic depletion and pharmacological inactivation of SIRT2 in BLBC cells reversed Slug stabilization, caused the loss of clinically relevant pathological features of BLBC, and inhibited tumor growth. Without SIRT2, tumor cells had a more than 60% reduction in invasive capacity compared to normal basal-like tumor cells. SIRT2-depleted cells also had significantly decreased capacity for growth and self-renewal. This diminished malignancy could be reversed by artificially introducing Slug protein back into cells.

"Breast cancer is not one disease, and of the several distinct subtypes, basal-like breast cancer represents the most aggressive form. By targeting a master transcription factor regulator in basal-like cells, we were able to reduce malignant behaviors," said senior author Dr. Charlotte Kuperwasser, professor of developmental, molecular, and chemical biology at Tufts University School of Medicine. "Our findings now provide a molecular rationale for new approaches to help improve the poor clinical outcomes currently associated with these cancers."

"Cancer cells find sophisticated ways to regulate essential proteins they need for their survival and growth. The transcriptional factor Slug is one such protein and is often tightly regulated in both normal and cancer cells. While we have found that SIRT2 plays an important role in prolonging Slug expression, it is too soon to know whether targeting SIRT2 will be sufficient to abolish Slug entirely in cancer cells and therefore lead to tumor regression," said Dr. Kuperwasser. "A significant amount of work remains to be done before we can verify if targeting SIRT2 can be an Achilles' heel for treating basal-like breast cancers."

Related Links:
Tufts University School of Medicine

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.