We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mouse Study Identifies Molecular Mechanism behind Bacterial Meningitis

By LabMedica International staff writers
Posted on 20 Dec 2016
Print article
Image: A fluorescent micrograph showing detection of Salmonella (red) in macrophages (green) and other immune cells in the ventricles of the brain of a mouse orally fed Salmonella. Salmonella-infected areas were associated with an increase of cells (blue nucleus) in the ventricles and meninges of the brain, a hallmark of bacterial meningitis (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
Image: A fluorescent micrograph showing detection of Salmonella (red) in macrophages (green) and other immune cells in the ventricles of the brain of a mouse orally fed Salmonella. Salmonella-infected areas were associated with an increase of cells (blue nucleus) in the ventricles and meninges of the brain, a hallmark of bacterial meningitis (Photo courtesy of the [U.S.] National Institute of Allergy and Infectious Diseases).
A team of molecular microbiologists examined the ability of the bacterium Salmonella enterica serovar Typhimurium to infect the central nervous system and cause meningitis following the natural route of infection in mice.

Investigators at the [U.S.] National Institute of Allergy and Infectious Diseases Rocky Mountain Laboratories (Hamilton, MT, USA) worked with two lines of C57BL/6J mic. These animals are extremely susceptible to systemic infection by Salmonella Typhimurium because of loss-of-function mutations in Nramp1 (Natural resistance-associated macrophage protein 1), a phagosomal membrane protein that controls iron export from vacuoles and inhibits Salmonella growth in macrophages.

In the current study, the investigators assessed the ability of Salmonella to disseminate to the central nervous system (CNS) after oral infection in C57BL/6J mice expressing either wild-type (resistant) or mutant (susceptible) alleles of Nramp1. They reported in the December 9, 2016, online edition of the American Journal of Pathology that in both strains, oral infection resulted in focal meningitis and ventriculitis with recruitment of inflammatory monocytes to the CNS. In the susceptible Nramp1−/− mice, there was a direct correlation between bacteremia and the number of bacteria in the brain, which was not observed in resistant Nramp1+/+ mice.

The investigators concluded that Nramp1 was not essential for Salmonella entry into the CNS or neuroinflammation, but may have influenced the mechanisms of CNS entry as well as the severity of meningitis.

Related Links:
[U.S.] National Institute of Allergy and Infectious Diseases

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Newborn Screening Test
NeoMass AAAC 3.0
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.