We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Mechanism Explains How Colon Cancer Suppressor Protein Works

By LabMedica International staff writers
Posted on 22 Dec 2016
The intracellular protein NLRC3 (NLR family CARD domain containing 3) blocks growth of colon cancer by suppressing activation of mTOR (Mechanistic target of rapamycin) signaling pathways.

NLRs (nucleotide-binding domain and leucine-rich repeats) belong to a large family of cytoplasmic sensors that regulate a diverse range of biological functions. More...
One of these functions is to contribute to immunity against infectious diseases, but dysregulation of their functional activity leads to the development of inflammatory and autoimmune diseases. NLRC3 is a poorly characterized member of the NLR family and was identified in a genomic screen for genes encoding proteins bearing leucine-rich repeats (LRRs) and nucleotide-binding domains. Expression of NLRC3 was drastically reduced in the tumor tissue of patients with colorectal cancer compared to healthy tissues, highlighting an undefined potential function for this sensor in the development of cancer.

To learn more about a possible link between NLRC3 and colon cancer, investigators at St. Jude Children's Research Hospital (Memphis, TN, USA) worked with various mouse colon cancer models including those deficient or lacking in NLRC3.

The investigators reported in the December 12, 2016, online edition of the journal Nature that mice lacking NLRC3 were hyper-susceptible to colitis and development of colorectal tumors. A mouse strain with a tendency to develop colon polyps showed much greater tumor development when they lacked NLRC3, and overexpression of NLRC3 blocked tumor formation. The effect of NLRC3 was most dominant in enterocytes, in which it suppressed activation of the mTOR signaling pathways and inhibited cellular proliferation and stem-cell-derived organoid formation. NLRC3 associated with PI3K (Phosphoinositide 3-kinase) and blocked activation of the PI3K-dependent kinase AKT (Protein kinase B) following binding of growth factor receptors or Toll-like receptor 4.

"All of these complementary approaches to understanding NLRC3 allowed us to really nail it down that NLRC3 is important for protecting from abnormal colon cell growth, and when it is not present, tumors will develop," said senior author Dr. Kanneganti Thirumala-Devi, an immunologist at St. Jude Children's Research Hospital. "This suggested that if we can somehow induce NLRC3 expression clinically, it will block the signaling pathways that lead to tumorigenesis. In developing drug therapies, it might be difficult to target the PI3K-mTOR pathway itself, because it is such a central node in cell signaling. Thus, we could target NLRC3 itself and block tumorigenesis early on."

Related Links:
St. Jude Children's Research Hospital



Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology Analyzer
Medonic M32B
Pipette
Accumax Smart Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.