We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Artemisinin Hastens TB Cure by Preventing Bacteria from Becoming Dormant

By LabMedica International staff writers
Posted on 05 Jan 2017
Print article
Image: A ball and stick model of artemisinin (Photo courtesy of Wikimedia Commons).
Image: A ball and stick model of artemisinin (Photo courtesy of Wikimedia Commons).
A team of microbiologists has found that a drug usually used to treat malaria can shorten the time needed to treat tuberculosis (TB) by preventing the causative organism (Mycobacterium tuberculosis) from entering a dormant, drug resistant state.

The drug, artemisinin, which is isolated from the plant Artemisia annua, a sweet wormwood, is an herb employed in Chinese traditional medicine. A precursor compound can be produced using genetically engineered yeast. Artemisinin has been used for the treatment of Plasmodium falciparum related infections but low bioavailability, poor pharmacokinetic properties, and high cost of the drugs are a major drawback of their use, and there are signs that malarial parasites are developing resistance to the drug.

Investigators at Michigan State University (East Lansing, USA) examined the effectiveness of artemisinin for treatment of TB after it was identified during a screen of more than 540,000 compounds that were tested for ability to prevent M. tuberculosis from entering its dormant state.

The investigators reported in the December 19, 2016, online edition of the journal Nature Chemical Biology that M. tuberculosis became dormant in response to hypoxia, and that artemisinin inhibited the bacterial heme molecule, which functioned as an oxygen sensor. By disabling this sensor, artemisinin prevented the organism from sensing how much oxygen it was getting and blocked it from becoming dormant.

“When M. tuberculosis is starved of oxygen, it goes into a dormant state, which protects it from the stress of low-oxygen environments,” said senior author Dr. Robert Abramovitch, assistant professor of microbiology and molecular genetics at Michigan State University. “If M. tuberculosis cannot sense low oxygen, then it cannot become dormant and will die. When TB bacteria are dormant, they become highly tolerant to antibiotics. Blocking dormancy makes the TB bacteria more sensitive to these drugs and could shorten treatment times. Two billion people worldwide are infected with M. tuberculosis. TB is a global problem that requires new tools to slow its spread and overcome drug resistance. This new method of targeting dormant bacteria is exciting because it shows us a new way to kill it.”

Related Links:
Michigan State University

Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.