We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Disrupted Molecular Signaling Drives Cancer Metastasis

By LabMedica International staff writers
Posted on 24 Jan 2017
Print article
Image: Molecular model of YAP (Yes-associated protein) (Photo courtesy of Wikimedia Commons).
Image: Molecular model of YAP (Yes-associated protein) (Photo courtesy of Wikimedia Commons).
A malfunction in molecular signaling that continually activates Yes-associated protein (YAP) has been linked to the ability of metastatic cancer cells to break away from the extracellular matrix (ECM) and travel throughout the body.

In order to study the interaction between YAP and ECM, investigators at The Institute of Cancer Research had to solve the technical challenge caused by perturbations that affect cell shape and, indirectly, protein localization. To this end they developed a method using single-cell image analysis and statistical models that exploited the naturally occurring heterogeneity of cellular populations.

The investigators then systematically deleted 950 individual genes in cancer cell lines to identify any that influenced YAP signaling. They reported in the January 5, 2017, online edition of the journal Cell Systems that the proteins beta-PIX and PAK2, were the drivers behind both YAP activation and cell-ECM adhesion turnover during cell spreading.

To examine how YAP's activity was controlled in cancer cells, the investigators worked with cultures of triple-negative breast cancer cells that were derived either from a primary tumor or from a metastatic site. They found that if the beta-PIX pathway was disabled in cells from the primary tumor, YAP failed to activate. In contrast, in cells taken from the site of metastasis, YAP did activate. This finding indicated that invasive cancer cells sustained high levels of YAP even when not bound to the surrounding matrix.

Senior author Dr. Chris Bakal, leader of the dynamical cell systems team at The Institute of Cancer Research, said, "Our research shows how cancer cells that have become invasive are able overcome the normal constraints on cell movement. Cancer cells that have spread around the body have a switch which is jammed on - allowing them to produce a molecule called YAP all the time. This allows them to keep growing and spreading throughout the body, ignoring the physical controls that would normally stop this happening. Understanding more about the physical processes which constrain and control the growth and movement of cells can open up exciting new avenues for cancer treatment, which may have been missed until now."

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.