We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Drugs Identified May Stimulate Axon Regeneration

By LabMedica International staff writers
Posted on 21 Mar 2017
Print article
Image: Treatment with fusicoccin-A induces the regeneration of damaged axons towards the center of the injury. The axons are stained in green and the tips of the growing axons, called growth cones, are stained in red (Photo courtesy of McGill University).
Image: Treatment with fusicoccin-A induces the regeneration of damaged axons towards the center of the injury. The axons are stained in green and the tips of the growing axons, called growth cones, are stained in red (Photo courtesy of McGill University).
A team of neurological science researchers has identified a class of small molecular growth promotors that may prove to be the basis for drugs designed to correct loss of axons following brain or nervous system injury or other disorders and diseases, including multiple sclerosis and neurodegenerative conditions.

Damaged central nervous system (CNS) neurons have a poor ability to spontaneously regenerate, causing persistent functional deficits after injury. Therapies that stimulate axon growth are needed to repair CNS damage.

Investigators at McGill University studied the potential of 14-4-3 proteins in this regard. These proteins are members of a family of conserved regulatory molecules that are expressed in all eukaryotic cells. 14-3-3 proteins have the ability to bind a multitude of functionally diverse signaling proteins, including kinases, phosphatases, and transmembrane receptors. The name 14-3-3 refers to the particular elution and migration pattern of these proteins on DEAE-cellulose chromatography and starch-gel electrophoresis. More than 200 signaling proteins have been reported as 14-3-3 ligands.

The investigators reported in the March 8, 2017, online edition of the journal Neuron that a small-molecule stabilizer of 14-3-3 protein-protein interactions called fusicoccin-A (FC-A), stimulated axon growth in vitro and regeneration in vivo. Fusicoccin is an organic compound produced by the fungus Fusicoccum amygdali, which is a parasite of mainly almond and peach trees. It stimulates a quick acidification of the plant cell wall; this causes the stomata to irreversibly open, which brings about the death of the plant.

In the current study, the investigators found that FC-A stabilized a complex between 14-3-3 and the stress response regulator protein GCN1, inducing GCN1 turnover and axonal outgrowth.

"We have identified a novel strategy to promote axon regeneration with a family of small molecules that may be excellent candidates for future drug development," said senior author Dr. Alyson Fournier, professor of neurology and neurosurgery at McGill University. "This is an exciting advance because the field has struggled to find treatments and identify targets for drugs that stimulate axon repair."

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.