We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Organoid Culture System Used for Brain Cell Research

By LabMedica International staff writers
Posted on 24 Apr 2017
Print article
Image: Human stem cells derived from skin samples have been induced to form tiny, three-dimensional, brain-like cultures that behave similarly to cells in the human midbrain (Photo courtesy of the University of Luxembourg).
Image: Human stem cells derived from skin samples have been induced to form tiny, three-dimensional, brain-like cultures that behave similarly to cells in the human midbrain (Photo courtesy of the University of Luxembourg).
Brain cells - derived from pluripotent stem cells - growing in culture assemble into three-dimensional (3D), brain-like structures (organoids) that can serve as an experimental model system for studies into the cellular biology of the normal and diseased brain.

Research on human brain development and neurological diseases has been limited by the lack of advanced experimental in vitro models that truly recapitulate the complexity of the human brain. In an effort to resolve this dilemma, investigators at the University of Luxembourg used a precisely defined cocktail of growth factors and a novel treatment method to drive pluripotent stem cells to develop into a robust human brain organoid system that was highly specific to the midbrain. These human midbrain organoids contained spatially organized groups of dopaminergic neurons, which made them an attractive model for the study of Parkinson’s disease.

The investigators characterized the neuronal, astroglial, and oligodendrocyte differentiation of the midbrain organoids in detail in the April 13, 2017, online edition of the journal Stem Cell Reports. In addition, they demonstrated the presence of synaptic connections and electrophysiological activity. The complexity of this model was further highlighted by the myelination of neurites.

"Our cell cultures open new doors to brain research," said senior author Dr. Jens Schwamborn, professor of developmental and cellular biology at the University of Luxembourg. "We can now use them to study the causes of Parkinson's disease and how it could possibly be effectively treated. Our subsequent examination of these artificial tissue samples revealed that various cell types characteristic of the midbrain had developed. The cells can transmit and process signals. We were even able to detect dopaminergic cells - just like in the midbrain."

"On our new cell cultures, we can study the mechanisms that lead to Parkinson's much better than was ever the case before, "said Dr. Schwamborn." We can test what effects environmental impacts such as pollutants have on the onset of the disease, whether there are new active agents that could possibly relieve the symptoms of Parkinson's, or whether the disease could even be cured from its very cause. We will be performing such investigations next."

The investigators have established a biotech company, Braingineering Technologies Sarl to explore the commercial potential of brain organoid cultures for research and drug development.

New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Urine Strips
11 Parameter Urine Strips
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.