We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Silicon Treatment Preserves Antibiotics and Vaccines for Years

By LabMedica International staff writers
Posted on 03 May 2017
A novel method for encasing molecules of biomedical interest such as antibodies and vaccines in silica "cages" stabilizes them against denaturing thermal treatment and long-term ambient-temperature storage, and subsequently enables them to be released into solution with their structure and function intact.

Biological substances based on proteins, including vaccines, antibodies, and enzymes, typically degrade at room temperature over time due to denaturation, as proteins unfold with loss of secondary and tertiary structure. More...
Their storage and distribution therefore relies on a "cold chain" of continuous refrigeration, which is costly and not always effective, as any break in the chain leads to rapid loss of effectiveness and potency. Efforts have been made to make vaccines thermally stable using treatments including freeze-drying (lyophilization), biomineralization, and encapsulation in sugar glass and organic polymers.

In a new approach, investigators at the University of Bath and colleagues at the University of Newcastle used a silica-based process to stabilize protein structure. In this process, a protein in solution was mixed with silicon dioxide, which bound closely around the protein to match its shape, and quickly built up many layers, encasing the protein. This method did not require freeze-drying, a treatment that potential destroys half of all vaccines.

The investigators reported in the April 24, 2017, online edition of the journal Scientific Reports that they had used this "ensilication" process to treat hen egg white lysozyme (HEWL), a robust and well-characterized protein with enzymatic activity; horse hemoglobin, a heterotetrameric protein with a complex tertiary and quaternary structure; and tetanus toxin C-fragment (TTCF)22, a vaccinogenic tetanus fragment, which is a part of the commonly used DTP vaccine. Results revealed that the proteins could be heated to 100 degrees Celsius or stored at 22 degrees Celsius for at least six months with no loss of function.

Senior author Dr. Asel Sartbaeva, a research fellow in chemistry at the University of Bath, said, "We have demonstrated with ensilication that we can simply and reliably keep proteins from breaking down even at up to 100°C, or store them as a powder for up to three years at room temperature without loss of function. We are very excited by the potential applications of ensilication and our next steps will be to test our findings on more vaccines, antibodies, antiviral and anti-venom drugs, and other biopharmaceuticals."


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.